Probabilistic control of chaos: The beta-adic Renyi map under control

被引:13
作者
Antoniou, I
Basios, V
Bosco, F
机构
[1] FREE UNIV BRUSSELS,SERV CHIM PHYS,B-1050 BRUSSELS,BELGIUM
[2] UNIV FED ESPIRITO SANTO,DEPT FIS,VITORIA 29069,SPAIN
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1996年 / 6卷 / 08期
关键词
D O I
10.1142/S0218127496000928
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a new, probabilistic, approach for the control of chaotic systems. This approach is illustrated by a specific method, for the control of any periodic orbit of the simplest piecewise linear chaotic map, namely the beta-adic Renyi map. As these chaotic maps are structurally stable, they cannot be controlled using conventional control methods without significant change of the controlling system. The chosen periodic orbit of the original system is a global attractor for the probability densities. The generalized spectral decomposition of the associated Frobenius-Perron operator provides a spectral condition of controllability for chaotic dynamical systems.
引用
收藏
页码:1563 / 1573
页数:11
相关论文
共 24 条
[1]   GENERALIZED SPECTRAL DECOMPOSITIONS OF MIXING DYNAMIC-SYSTEMS [J].
ANTONIOU, I ;
TASAKI, S .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1993, 46 (03) :425-474
[2]   SPECTRAL DECOMPOSITION OF THE RENYI MAP [J].
ANTONIOU, I ;
TASAKI, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (01) :73-94
[3]   FROM PROBABILISTIC DESCRIPTIONS TO DETERMINISTIC DYNAMICS [J].
ANTONIOU, IE ;
GUSTAFSON, KE .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 197 (1-2) :153-166
[4]  
Barnsley M. F., 2014, Fractals Everywhere
[5]   FROM CHAOS TO ORDER - PERSPECTIVES AND METHODOLOGIES IN CONTROLLING CHAOTIC NONLINEAR DYNAMICAL SYSTEMS [J].
Chen, Guanrong ;
Dong, Xiaoning .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06) :1363-1409
[6]   R-ADIC ONE-DIMENSIONAL MAPS AND THE EULER SUMMATION FORMULA [J].
GASPARD, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08) :L483-L485
[7]   DECAYING EIGENSTATES FOR SIMPLE CHAOTIC SYSTEMS [J].
HASEGAWA, HH ;
SAPHIR, WC .
PHYSICS LETTERS A, 1992, 161 (06) :471-476
[8]  
HOPF E, 1954, J RATION MECH ANAL, V3, P13
[9]  
Kailath T., 1980, Linear systems
[10]  
Nicolis G., 1989, Exploring Complexity: An Introduction