Universality of optimal measurements

被引:12
作者
Tarrach, R [1 ]
Vidal, G [1 ]
机构
[1] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain
来源
PHYSICAL REVIEW A | 1999年 / 60卷 / 05期
关键词
D O I
10.1103/PhysRevA.60.R3339
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present optimal and minimal measurements on identical copies of an unknown state of a quantum bit when the quality of measuring strategies is quantified with the gain of information (Kullback-or mutual information-of probability distributions). We also show that the maximal gain of information occurs, among isotropic priors, when the state is known to be pure. Universality of optimal measurements follows from our results: using the fidelity or the gain of information, two different figures of merits, leads to exactly the same conclusions for isotropic distributions. We finally investigate the optimal capacity of N copies of an unknown state as a quantum channel of information. [S1050-2947(99)51311-5].
引用
收藏
页码:R3339 / R3342
页数:4
相关论文
共 16 条
[1]  
[Anonymous], J STAT PHYS
[2]   INFORMATION AND QUANTUM MEASUREMENT [J].
DAVIES, EB .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (05) :596-599
[3]   Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement [J].
Derka, R ;
Buzek, V ;
Ekert, AK .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1571-1575
[4]  
FUCHS CA, QUANTPH9604001
[5]  
Fuchs CA., 1995, Open Syst. Inf. Dyn, V3, P345, DOI DOI 10.1007/BF02228997
[6]  
Holevo A. S., 1973, PROBL INFORM TRANSM, V9, P177
[7]  
HOLEVO AS, 1982, PROBABILISTIC STAT A, pCH4
[8]   FIDELITY FOR MIXED QUANTUM STATES [J].
JOZSA, R .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2315-2323
[9]   ON INFORMATION AND SUFFICIENCY [J].
KULLBACK, S ;
LEIBLER, RA .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01) :79-86
[10]  
KULLBACK S, 1959, INFORMATION THEORY S