Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells

被引:234
作者
Huang, KQ
Hou, PY
Goodenough, JB
机构
[1] Univ Texas, Texas Mat Inst, Austin, TX 78713 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA
关键词
metallic interconnects; solid oxide fuel cell; oxidation kinetics; area-specific resistance; iron-based alloys;
D O I
10.1016/S0167-2738(99)00329-X
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The oxidation kinetics and electrical properties of oxide scales thermally grown on the surface of a commercial ferritic alloy have been investigated on the un-oxidized and pre-oxidized alloys as functions of temperature and time under oxidizing atmospheres with four different electrodes. Oxidation kinetic studies with the un-oxidized alloys show a nearly parabolic dependence on time of oxide-scale growth rate, but a significantly increased growth rate with a coating of LSCo (La0.6Sr0.4CoO3-delta) compared to those without and with the coatings of LSM (La0.85Sr0.15MnO3) + LSGM (La0.8Sr0.2Ga0.83Mg0.17O2.815) and platinum. Short-term resistance measurements in stagnant air as a function of temperature with pre-oxidized alloys indicate that the oxide scale has a semiconducting transport property. The overall activation energy includes a term from small-polaron hopping inside the oxide scale Delta H-m and terms Delta H-i and Delta H-j from charge transfers at the electrode/oxide-scale and alloy/oxide-scale interfaces, respectively. For the LSCo electrode, long-term resistance measurements as a function of time with un-oxidized alloys reveal a secondary oxidation mechanism related to the formation of an insulating spinel phase in addition to a primary oxidation mechanism associated with the formation of Cr2O3. SEM observations show that oxidation of the un-oxidized alloy in the presence of an oxide electrode results in considerable interdiffusion of Cr and the electrode cations, especially Co, across the interfaces. Since the ASR values of the oxide scale measured with oxide electrodes quickly approach the permitted limit of a practical SOFC, highly recommended for prevention of a secondary electrochemical oxidation of iron-based alloy interconnects is (1) the use of an oxide coating having purely electronic conductivity and/or (2) prior-to-use conditioning of the alloys via pre-oxidation. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:237 / 250
页数:14
相关论文
共 18 条
[1]   Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells [J].
Badwal, SPS ;
Deller, R ;
Foger, K ;
Ramprakash, Y ;
Zhang, JP .
SOLID STATE IONICS, 1997, 99 (3-4) :297-310
[2]  
BIRKS N, 1962, J I MET, V91, P308
[3]  
DAS D, 1994, P 1 EUR SOL OX FUEL, P703
[4]   Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte [J].
deSouza, S ;
Visco, SJ ;
DeJonghe, LC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (03) :L35-L37
[5]   Thin-film solid oxide fuel cell with high performance at low-temperature [J].
deSouza, S ;
Visco, SJ ;
DeJonghe, LC .
SOLID STATE IONICS, 1997, 98 (1-2) :57-61
[6]  
FENG M, 1994, EUR J SOL STATE INOR, V31, P663
[7]  
Huang KQ, 1998, J AM CERAM SOC, V81, P2565, DOI 10.1111/j.1151-2916.1998.tb02662.x
[8]   Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium [J].
Huang, PN ;
Petric, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (05) :1644-1648
[9]   DOPED LAGAO3 PEROVSKITE-TYPE OXIDE AS A NEW OXIDE IONIC CONDUCTOR [J].
ISHIHARA, T ;
MATSUDA, H ;
TAKITA, Y .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (09) :3801-3803
[10]   APPLICABILITY OF HEAT RESISTING ALLOYS TO THE SEPARATOR OF PLANAR TYPE SOLID OXIDE FUEL-CELL [J].
KADOWAKI, T ;
SHIOMITSU, T ;
MATSUDA, E ;
NAKAGAWA, H ;
TSUNEIZUMI, H ;
MARUYAMA, T .
SOLID STATE IONICS, 1993, 67 (1-2) :65-69