DNA methylation;
repetitive sequences;
salt stress;
tobacco;
D O I:
10.1007/s001220050563
中图分类号:
S3 [农学(农艺学)];
学科分类号:
0901 ;
摘要:
Plants have to cope with a number of environmental stresses which may potentially induce genetic and epigenetic changes and thus contribute to genome variability. In the present study we inspected the DNA methylation status of two heterochromatic loci (defined with repetitive DNA sequences HRS60 and GRS) in a tobacco cell culture exposed to osmotic stress. Investigations were performed on a TBY-2 cell suspension culture, and the stress was elicited with NaCl or D-mannitol. Using the restriction enzymes MspI/IHpaII and MboI/Sau3AI in combination with Southern hydridization we observed a reversible hypermethylation of the external cytosine at the CpCpG trinucleotides in cells grown under mild osmotic stress equal to a NaCl concentration of 10 g/l. There were no changes in the methylation of the internal cytosine as the CpG dinucleotides within the CCGG motifs (HpaII sites) appeared to be fully methylated in tobacco DNA repetitive sequences under normal physiological conditions. The data suggest epigenetic changes in the plant genome based on de novo methylation of DNA in response to environmental stress.