Newton's method on Riemannian manifolds and a geometric model for the human spine

被引:190
作者
Adler, RL [1 ]
Dedieu, JP
Margulies, JY
Martens, M
Shub, M
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Dept Math Sci, Yorktown Hts, NY 10598 USA
[2] Univ Toulouse 3, Dept Math, MIP, F-31062 Toulouse 04, France
[3] Orthopaed Spine Surg, Pleasantville, NY 10570 USA
关键词
Newton's method; Riemannian manifold; orthogonal group; human spine;
D O I
10.1093/imanum/22.3.359
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To study a geometric model of the human spine we are led to finding a constrained minimum of a real valued function defined on a product of special orthogonal groups. To take advantge of its Lie group structure we consider Newton's method on this manifold. Comparisons between measured spines and computed spines show the pertinence of this approach.
引用
收藏
页码:359 / 390
页数:32
相关论文
共 40 条
[1]  
Allgower E., 1990, NUMERICAL CONTINUATI
[2]  
[Anonymous], DYNAMICAL SYSTEMS PA
[3]  
[Anonymous], 1986, MERGING DISCIPLINES
[5]   ON SMOOTHNESS AND INVARIANCE PROPERTIES OF THE GAUSS-NEWTON METHOD [J].
BEYN, WJ .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (5-6) :503-514
[6]  
Blum L., 1998, Complexity and Real Computation
[7]   Methods for the approximation of the matrix exponential in a Lie-algebraic setting [J].
Celledoni, E ;
Iserles, A .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (02) :463-488
[8]  
Dedieu JP, 2000, MATH COMPUT, V69, P1099, DOI 10.1090/S0025-5718-99-01115-1
[9]  
Dedieu JP, 2000, MATH COMPUT, V69, P1071, DOI 10.1090/S0025-5718-99-01114-X
[10]   Newton's method for analytic systems of equations with constant rank derivatives [J].
Dedieu, JP ;
Kim, MH .
JOURNAL OF COMPLEXITY, 2002, 18 (01) :187-209