A near-linear area bound for drawing binary trees

被引:24
作者
Chan, TM [1 ]
机构
[1] Univ Waterloo, Dept Comp Sci, Waterloo, ON N2L 3G1, Canada
关键词
graph drawing; trees;
D O I
10.1007/s00453-002-0937-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present several simple methods to construct planar, strictly upward, strongly order-preserving, straight-line drawings of any n-node binary tree. In particular, it is shown that O (n(1+epsilon)) area is always sufficient for an arbitrary constant epsilon > 0.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 14 条
[1]  
CHAN TM, 1997, LECT NOTES COMPUT SC, V1190, P63
[2]   Linear area upward drawings of AVL trees [J].
Crescenzi, P ;
Penna, P ;
Piperno, A .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 9 (1-2) :25-42
[3]  
Crescenzi P., 1992, Computational Geometry: Theory and Applications, V2, P187, DOI 10.1016/0925-7721(92)90021-J
[4]   Strictly-upward drawings of ordered search trees [J].
Crescenzi, P ;
Penna, P .
THEORETICAL COMPUTER SCIENCE, 1998, 203 (01) :51-67
[5]  
DIBATTISTA G, 1998, GRAPH DRAWING
[6]   Planar upward tree drawings with optimal area [J].
Garg, A ;
Goodrich, MT ;
Tamassia, R .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1996, 6 (03) :333-356
[7]   Logarithmic width, linear area upward drawing of AVL trees [J].
Kim, SK .
INFORMATION PROCESSING LETTERS, 1997, 63 (06) :303-307
[8]  
LEISERSON CE, 1980, P 21 ANN IEEE S FDN, P270
[9]   TIDIER DRAWINGS OF TREES [J].
REINGOLD, EM ;
TILFORD, JS .
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1981, 7 (02) :223-228
[10]  
SHILOACH Y, 1976, THESIS WEIZMANN I SC