A null space algorithm for mixed finite-element approximations of Darcy's equation

被引:20
作者
Arioli, M [1 ]
Manzini, G
机构
[1] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England
[2] CNR, IAN, I-27100 Pavia, Italy
来源
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING | 2002年 / 18卷 / 09期
关键词
augmented systems; sparse matrices; mixed finite elements;
D O I
10.1002/cnm.524
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A null space algorithm is considered to solve the augmented system produced by the mixed finite-element approximation of Darcy's Law. The method is based on the combination of an orthogonal factorization technique for sparse matrices with an iterative Krylov solver. The computational efficiency of the method relies on a suitable stopping criterion for the iterative solver. We experimentally investigate its performance on a realistic set of selected application problems. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:645 / 657
页数:13
相关论文
共 12 条
[1]  
Amestoy PR, 1996, NUMER LINEAR ALGEBR, V3, P275
[2]   The use of QR factorization in sparse quadratic programming and backward error issues [J].
Arioli, M .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (03) :825-839
[3]   A backward error analysis of a null space algorithm in sparse quadratic programming [J].
Arioli, M ;
Baldini, L .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (02) :425-442
[4]  
ARIOLI M, 2001, RALTR2001023 RALCLRC
[5]  
ARIOLT M, 2000, 1179 IANCNR
[6]  
Brezzi F., 1992, Mixed and Hybrid Finite Element Methods
[7]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[8]   THE MULTIFRONTAL SOLUTION OF INDEFINITE SPARSE SYMMETRIC LINEAR-EQUATIONS [J].
DUFF, IS ;
REID, JK .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1983, 9 (03) :302-325
[9]  
Gill M., 1981, Practical Optimization
[10]   Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods [J].
Golub, GH ;
Meurant, G .
BIT, 1997, 37 (03) :687-705