Modeling the effect of time-dependent exposure on intensive care unit mortality

被引:41
作者
Wolkewitz, Martin [1 ,2 ]
Beyersmann, Jan [1 ,2 ]
Gastmeier, Petra [3 ]
Schumacher, Martin [2 ]
机构
[1] Univ Freiburg, Freiburg Ctr Data Anal & Modelling, D-79104 Freiburg, Germany
[2] Univ Med Ctr Freiburg, Inst Med Biometry & Med Informat, D-79104 Freiburg, Germany
[3] Charite Univ Med Berlin, Inst Hyg & Environm Med, D-14059 Berlin, Germany
关键词
Nosocomial infections; Competing risks; Event-specific hazard; Subdistribution hazard; Population attributable fraction; COMPETING RISKS MODELS; LENGTH-OF-STAY; NOSOCOMIAL INFECTION; MULTISTATE MODELS; PROPORTIONAL HAZARDS; ATTRIBUTABLE MORTALITY; LOGISTIC-REGRESSION; SUBDISTRIBUTION; APPROPRIATE; BACTEREMIA;
D O I
10.1007/s00134-009-1423-6
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
To illustrate modern survival models with focus on the temporal dynamics of intensive care data. A typical situation is given in which time-dependent exposures and competing events are present. We briefly review the following established statistical methods: logistic regression, regression models for event-specific hazards and the subdistribution hazard. These approaches are compared by showing advantages as well as disadvantages. All methods are applied to real data from a study of day-by-day ICU surveillance. Standard logistic regression ignores the time-dependent nature of the data and is only a crude approach. Cumulative hazards and probability plots add important information and provide a deep insight into the temporal dynamics. This paper might help to encourage researchers working in hospital epidemiology to apply adequate statistical models to complex medical questions.
引用
收藏
页码:826 / 832
页数:7
相关论文
共 33 条
[1]   Year in review in Intensive Care Medicine, 2006. II. Infections and sepsis, haemodynamics, elderly, invasive and noninvasive mechanical ventilation, weaning, ARDS [J].
Andrews, Peter ;
Azoulay, Elie ;
Antonelli, Massimo ;
Brochard, Laurent ;
Brun-Buisson, Christian ;
De Backer, Daniel ;
Dobb, Geoffrey ;
Fagon, Jean-Yves ;
Gerlach, Herwig ;
Groeneveld, Johan ;
Macrae, Duncan ;
Mancebo, Jordi ;
Metnitz, Philipp ;
Nava, Stefano ;
Pugin, Jerome ;
Pinsky, Michael ;
Radermacher, Peter ;
Richard, Christian .
INTENSIVE CARE MEDICINE, 2007, 33 (02) :214-229
[2]   EFFICIENCY OF THE LOGISTIC-REGRESSION AND COX PROPORTIONAL HAZARDS MODELS IN LONGITUDINAL-STUDIES [J].
ANNESI, I ;
MOREAU, T ;
LELLOUCH, J .
STATISTICS IN MEDICINE, 1989, 8 (12) :1515-1521
[3]   Year in review in Intensive Care Medicine, 2007. III. Ethics and legislation, health services research, pharmacology and toxicology, nutrition and paediatrics [J].
Antonelli, Massimo ;
Azoulay, Elie ;
Bonten, Marc ;
Chastre, Jean ;
Citerio, Giuseppe ;
Conti, Giorgio ;
De Backer, Daniel ;
Lemaire, Francois ;
Gerlach, Herwig ;
Groeneveld, Johan ;
Hedenstierna, Goran ;
Macrae, Duncan ;
Mancebo, Jordi ;
Maggiore, Salvatore M. ;
Mebazaa, Alexandre ;
Metnitz, Philipp ;
Pugin, Jerome ;
Wernerman, Jan ;
Zhang, Haibo .
INTENSIVE CARE MEDICINE, 2008, 34 (04) :598-609
[4]  
ARMITAGE P, 1998, ENCY BIOSTATISTICS, P2968
[5]   Quantifying excess length of postoperative stay attributable to infections: A comparison of methods [J].
Asensio, A ;
Torres, J .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 1999, 52 (12) :1249-1256
[6]   Competing risks models and time-dependent covariates [J].
Barnett, Adrian ;
Graves, Nick .
CRITICAL CARE, 2008, 12 (02)
[7]   Use of multistate models to assess prolongation of intensive care unit stay due to nosocomial infection [J].
Beyersmann, J. ;
Gastmeier, P. ;
Grundmann, H. ;
Baerwolff, S. ;
Geffers, C. ;
Behnke, M. ;
Rueden, H. ;
Schumacher, M. .
INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2006, 27 (05) :493-499
[8]   An easy mathematical proof showed that time-dependent bias inevitably leads to biased effect estimation [J].
Beyersmann, Jan ;
Gastmeier, Petra ;
Wolkewitz, Martin ;
Schumacher, Martin .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2008, 61 (12) :1216-1221
[9]   Time-dependent covariates in the proportional subdistribution hazards model for competing risks [J].
Beyersmann, Jan ;
Schumacher, Martin .
BIOSTATISTICS, 2008, 9 (04) :765-776
[10]  
Callas PW, 1998, AM J IND MED, V33, P33