Assessing the binding of four Plasmodium falciparum T helper cell epitopes to HLA-DQ and induction of T-cell responses in HLA-DQ transgenic mice

被引:10
作者
Pimtanothai, N
Parra, M
Johnson, AH
David, CS
Hurley, CK
机构
[1] Georgetown Univ, Med Ctr, Dept Microbiol & Immunol, Washington, DC 20007 USA
[2] Georgetown Univ, Dept Biol, Washington, DC 20007 USA
[3] Georgetown Univ, Dept Pediat, Washington, DC 20007 USA
[4] Mayo Clin & Mayo Fdn, Dept Immunol, Rochester, MN 55905 USA
关键词
D O I
10.1128/IAI.68.3.1366-1373.2000
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
A subunit vaccine for Plasmodium falciparum malaria will need to contain well-defined T helper cell epitopes that induce protective immune responses to the parasite. One major barrier to the use of subunit vaccines is the requirement for T helper cell epitopes to be presented by the HLA class II molecules that are present in the population being vaccinated. Since the majority of malaria studies have focused on HLA-DR, little information on the role of HLA-DQ in the binding and immune response to malarial epitopes is available. This study used an in vitro peptide-binding assay to predict the extent of HLA-DO binding of four conserved T helper cell epitopes identified from asexual-stage malaria vaccine candidate antigens, Epstein-Barr virus (EBV)-transformed human B-cell lines expressing 14 different DQ molecules (DQ2.1, -2.2, -4.1, -4.2, -5.1 to -5.3, -6.1, -6.2, -6.4, -7.1, -7.3, -8, and -9) representing all broad serological specificities, including common DQ molecules present in populations in areas where malaria is endemic, were used in the binding assay. Moreover, an HLA-DQ transgenic mouse model was employed to evaluate the correlation between the in vitro DQ binding of the peptides and the generation of in vivo immune responses following peptide immunization. This study identified two broad DO-binding peptides, ABRA#14 and SERA#9. ABRA#14 also induced T-cell proliferation and Th1-associated cytokine production in DQ8(+) transgenic mice. The combination of peptide binding to EBV-transformed cell lines and DQ transgenic mice provides a method for identifying additional T-cell epitopes for inclusion in a vaccine.
引用
收藏
页码:1366 / 1373
页数:8
相关论文
共 39 条
[1]  
BRODSKY FM, 1991, ANNU REV IMMUNOL, V9, P707
[2]  
Buckner J, 1996, J IMMUNOL, V157, P4940
[3]  
CalvoCalle JM, 1997, J IMMUNOL, V159, P1362
[4]   EXTENSIVE TRAFFICKING OF MHC CLASS II-INVARIANT CHAIN COMPLEXES IN THE ENDOCYTIC PATHWAY AND APPEARANCE OF PEPTIDE-LOADED CLASS-II IN MULTIPLE COMPARTMENTS [J].
CASTELLINO, F ;
GERMAIN, RN .
IMMUNITY, 1995, 2 (01) :73-88
[5]   CLASS-II MAJOR HISTOCOMPATIBILITY COMPLEX-DEFICIENT MICE INITIALLY CONTROL AN INFECTION WITH LEISHMANIA-MAJOR BUT SUCCUMB TO THE DISEASE [J].
CHAKKALATH, HR ;
THEODOS, CM ;
MARKOWITZ, JS ;
GRUSBY, MJ ;
GLIMCHER, LH ;
TITUS, RG .
JOURNAL OF INFECTIOUS DISEASES, 1995, 171 (05) :1302-1308
[6]   Mapping of specific and promiscuous HLA-DR-Restricted T-Cell epitopes on the Plasmodium falciparum 27-kilodalton sexual stage-specific antigen [J].
Contreras, CE ;
Ploton, IN ;
Siliciano, RF ;
Karp, CL ;
Viscidi, R ;
Kumar, N .
INFECTION AND IMMUNITY, 1998, 66 (08) :3579-3590
[7]  
FAN L, 1997, HLA GENETIC DIVERSIT, pD292
[8]  
GERMAIN RN, 1999, FUNDAMENTAL IMMUNOLO, P287
[9]   HLA POLYMORPHISM AND T-CELL RECOGNITION OF A CONSERVED REGION OF P190, A MALARIA VACCINE CANDIDATE [J].
GUTTINGER, M ;
ROMAGNOLI, P ;
VANDEL, L ;
MELOEN, R ;
TAKACS, B ;
PINK, JRL ;
SINIGAGLIA, F .
INTERNATIONAL IMMUNOLOGY, 1991, 3 (09) :899-906
[10]   MHC CLASS-II HAPLOTYPES AND LINKAGE DISEQUILIBRIUM IN PRIMATES [J].
GYLLENSTEN, UB ;
ERLICH, HA .
HUMAN IMMUNOLOGY, 1993, 36 (01) :1-10