Fedbatch culture and dynamic nutrient feeding

被引:66
作者
Wlaschin, Katie F. [1 ]
Hu, Wei-Shou [1 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
来源
CELL CULTURE ENGINEERING | 2006年 / 101卷
关键词
cell culture; process optimization; process control; metabolism; cell engineering;
D O I
10.1007/10_015
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In the past decade, we have seen a rapid expansion in mammalian cell based therapeutic proteins reaching clinical applications. This increased demand has been met with much increased productivity through intensive process development. During this time, fedbatch culture processes have emerged as the predominant mode for producing recombinant proteins. In this review, we discuss the fundamentals of fedbatch culture process design, focusing on the use of stoichiometric nutrient requirements for feed medium formulation, and articulating the need and potential means for devising rational dynamic feeding schemes. Incorporation of on-line nutrient measurement will play a key role in further refinement of process control for the development of a much sought after generic feeding strategy that can respond to the changing demands of different cell lines in a fluctuating culture environment. The future of process engineering will likely require a combination of current process engineering strategies along with a better understanding and control over cell physiology. Process development will likely to entail not only optimizing traditional engineering parameters but also engineering cell lines with desired characteristics. The integration of cell engineering and process intensification will likely provide the stimuli that propel the limits of growth and productivity to the next high level.
引用
收藏
页码:43 / 74
页数:32
相关论文
共 90 条
[1]   RNA interface-mediated reduction in GLUT1 inhibits serum-induced glucose transport in primary human skeletal muscle cells [J].
Al-Khalili, L ;
Cartee, GD ;
Krook, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 307 (01) :127-132
[2]   Strategies for fed-batch cultivation of t-PA producing CHO cells:: substitution of glucose and glutamine and rational design of culture medium [J].
Altamirano, C ;
Paredes, C ;
Illanes, A ;
Cairó, JJ ;
Gòdia, F .
JOURNAL OF BIOTECHNOLOGY, 2004, 110 (02) :171-179
[3]   Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture [J].
Altamirano, C ;
Illanes, A ;
Casablancas, A ;
Gámez, X ;
Cairó, JJ ;
Gòdia, C .
BIOTECHNOLOGY PROGRESS, 2001, 17 (06) :1032-1041
[4]   Improvement of CHO cell culture medium formulation:: Simultaneous substitution of glucose and glutamine [J].
Altamirano, C ;
Paredes, C ;
Cairó, JJ ;
Gòdia, F .
BIOTECHNOLOGY PROGRESS, 2000, 16 (01) :69-75
[5]   Decoupling cell growth and product formation in Chinese hamster ovary cells through metabolic control [J].
Altamirano, C ;
Cairó, JJ ;
Gòdia, F .
BIOTECHNOLOGY AND BIOENGINEERING, 2001, 76 (04) :351-360
[6]  
Andersen Dana C., 1994, Current Opinion in Biotechnology, V5, P546, DOI 10.1016/0958-1669(94)90072-8
[7]   Advances in animal cell recombinant protein production: GS-NS0 expression system [J].
Barnes L.M. ;
Bentley C.M. ;
Dickson A.J. .
Barnes, L.M., 2000, Springer Netherlands (32) :109-123
[8]  
BARNGROVER D, 1985, J CELL SCI, V78
[9]   HIGH-LEVEL EXPRESSION OF A RECOMBINANT ANTIBODY FROM MYELOMA CELLS USING A GLUTAMINE-SYNTHETASE GENE AS AN AMPLIFIABLE SELECTABLE MARKER [J].
BEBBINGTON, CR ;
RENNER, G ;
THOMSON, S ;
KING, D ;
ABRAMS, D ;
YARRANTON, GT .
BIO-TECHNOLOGY, 1992, 10 (02) :169-175
[10]   MONOCLONAL-ANTIBODY PROCESS-DEVELOPMENT USING MEDIUM CONCENTRATES [J].
BIBILA, TA ;
RANUCCI, CS ;
GLAZOMITSKY, K ;
BUCKLAND, BC ;
AUNINS, JG .
BIOTECHNOLOGY PROGRESS, 1994, 10 (01) :87-96