Regulation of calcium signaling by polycystin-2

被引:50
作者
Cantiello, HF [1 ]
机构
[1] Massachusetts Gen Hosp E, Renal Unit, Charlestown, MA 02129 USA
关键词
kidney; autosomal dominant polycystic kidney disease; polycystin-1; transient receptor potential channels; nonselective cation channels; calcium channels;
D O I
10.1152/ajprenal.00181.2003
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Autosomal dominant PKD ( ADPKD) is a common lethal genetic disorder characterized by progressive development of fluid-filled cysts in the kidney and other target organs. ADPKD is caused by mutations in the PKD1 and PKD2 genes, encoding the transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Although the function and putative interacting ligands of PC1 are largely unknown, recent evidence indicates that PC2 behaves as a TRP-type Ca2+-permeable nonselective cation channel. The PC2 channel is implicated in the transient increase in cytosolic Ca2+ in renal epithelial cells and may be linked to the activation of subsequent signaling pathways. Recent studies also indicate that PC1 functionally interacts with PC2 such that the PC1-PC2 channel complex is an obligatory novel signaling pathway implicated in the transduction of environmental signals into cellular events. The present review purposely avoids issues of regulation of PC2 expression and trafficking and focuses instead on the evidence for the TRP-type cation channel function of PC2. How its role as a cation channel may unmask mechanisms that trigger Ca2+ transport and regulation is the focus of attention. PC2 channel function may be essential in renal cell function and kidney development. Nonrenal-targeted expression of PC2 and related proteins, including the cardiovascular system, also suggests previously unforeseeable roles in signal transduction.
引用
收藏
页码:F1012 / F1029
页数:18
相关论文
共 152 条
[1]   Expression of polycystin-1 C-terminal fragment enhances the ATP-induced Ca2+ release in human kidney cells [J].
Aguiari, G ;
Campanella, M ;
Manzati, E ;
Pinton, P ;
Banzi, M ;
Moretti, S ;
Piva, R ;
Rizzuto, R ;
del Senno, L .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 301 (03) :657-664
[2]   Molecular genetics and pathogenesis of autosomal dominant polycystic kidney disease [J].
Arnaout, MA .
ANNUAL REVIEW OF MEDICINE, 2001, 52 :93-123
[3]   A polycystic kidney-disease gene homologue required for male mating behaviour in C-elegans [J].
Barr, MM ;
Sternberg, PW .
NATURE, 1999, 401 (6751) :386-389
[4]   Vanilloid and TRP channels: a family of lipid-gated cation channels [J].
Benham, CD ;
Davis, JB ;
Randall, AD .
NEUROPHARMACOLOGY, 2002, 42 (07) :873-888
[5]   CAPACITATIVE CALCIUM-ENTRY [J].
BERRIDGE, MJ .
BIOCHEMICAL JOURNAL, 1995, 312 :1-11
[6]   PKD1 induces p21waf1 and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2 [J].
Bhunia, AK ;
Piontek, K ;
Boletta, A ;
Liu, LJ ;
Qian, F ;
Xu, PN ;
Germino, FJ ;
Germino, GG .
CELL, 2002, 109 (02) :157-168
[7]   On the molecular basis and regulation of cellular capacitative calcium entry: Roles for Trp proteins [J].
Birnbaumer, L ;
Zhu, X ;
Jiang, MS ;
Boulay, G ;
Peyton, M ;
Vannier, B ;
Brown, D ;
Platano, D ;
Sadeghi, H ;
Stefani, E ;
Birnbaumer, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (26) :15195-15202
[8]   Biochemical characterization of bona fide polycystin-1 in vitro and in vivo [J].
Boletta, A ;
Qian, F ;
Onuchic, LF ;
Bragonzi, A ;
Cortese, M ;
Deen, PM ;
Courtoy, PJ ;
Soria, MR ;
Devuyst, O ;
Monaco, L ;
Germino, GG .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2001, 38 (06) :1421-1429
[9]  
Bootman MD, 2001, J CELL SCI, V114, P2213
[10]   Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene [J].
Boulter, C ;
Mulroy, S ;
Webb, S ;
Fleming, S ;
Brindle, K ;
Sandford, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (21) :12174-12179