On perturbative quantum field theory with boundary

被引:20
作者
Bajnok, Z
Böhm, G
Takács, G
机构
[1] Eotvos Lorand Univ, Inst Theoret Phys, HAS Theoret Phys Res Grp, H-1117 Budapest, Hungary
[2] Res Inst Particle Phys, H-1525 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
D O I
10.1016/j.nuclphysb.2004.01.018
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Boundary quantum field theory is investigated in the Lagrangian framework. Models are defined perturbatively around the Neumann boundary condition. The analyticity properties of the Green functions are analyzed: Landau equations, Cutkosky rules together with the Coleman-Norton interpretation are derived. Illustrative examples as well as argument for the equivalence with other perturbative expansions are presented. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:585 / 617
页数:33
相关论文
共 28 条
[1]  
Ablikim M, 2001, INT J MOD PHYS A, V16, P625, DOI 10.1142/S0217751X01002944
[2]   Boundary reduction formula [J].
Bajnok, Z ;
Böhm, G ;
Takács, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (44) :9333-9342
[3]   The spectrum of boundary states in sine-Gordon model with integrable boundary conditions [J].
Bajnok, Z ;
Palla, L ;
Takács, G ;
Tóth, GZ .
NUCLEAR PHYSICS B, 2002, 622 (03) :548-564
[4]   Boundary states and finite size effects in sine-Gordon model with Neumann boundary condition [J].
Bajnok, Z ;
Palla, L ;
Takács, G .
NUCLEAR PHYSICS B, 2001, 614 (03) :405-448
[5]   FLUCTUATIONS AND RENORMALIZATION OF A FIELD ON A BOUNDARY [J].
BENHAMOU, M ;
MAHOUX, G .
NUCLEAR PHYSICS B, 1988, 305 (01) :1-15
[6]   On the quantum reflection factor for the sinh-Gordon model with general boundary conditions [J].
Chenaghlou, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (29) :4623-4654
[7]   First order quantum corrections to the classical reflection factor of the Sinh-Gordon model [J].
Chenaghlou, A ;
Corrigan, E .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (28) :4417-4432
[8]   Second order quantum corrections to the classical reflection factor of the sinh-Gordon model [J].
Chenaghlou, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (28) :4613-4636
[9]   PROSAIC ORIGIN OF DOUBLE POLES IN SINE-GORDON S-MATRIX [J].
COLEMAN, S ;
THUN, HJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 61 (01) :31-39
[10]   SINGULARITIES IN PHYSICAL REGION [J].
COLEMAN, S ;
NORTON, RE .
NUOVO CIMENTO, 1965, 38 (01) :438-+