Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols

被引:275
作者
Brown, GC [1 ]
Borutaite, V [1 ]
机构
[1] Univ Cambridge, Dept Biochem, Cambridge CB2 1QW, England
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2004年 / 1658卷 / 1-2期
基金
英国惠康基金; 英国医学研究理事会;
关键词
nitric oxide; mitochondria; complex I; NADH-ubiquinone oxidoreductase; Parkinson's disease; respiration;
D O I
10.1016/j.bbabio.2004.03.016
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NO or its derivatives (reactive nitrogen species, RNS) inhibit mitochondrial complex I by several different mechanisms that are not well characterised. There is an inactivation by NO, peroxynitrite and S-nitrosothiols that is reversible by light or reduced thiols, and therefore may be due to S-nitrosation or Fe-nitrosylation of the complex. There is also an irreversible inhibition by peroxynitrite, other oxidants and high levels of NO, which may be due to tyrosine nitration, oxidation of residues or damage of iron sulfur centres. Inactivation of complex I by NO or RNS is seen in cells or tissues expressing iNOS, and may be relevant to inflammatory pathologies, such as septic shock and Parkinson's disease. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 49
页数:6
相关论文
共 52 条
[1]   Mitochondrial damage by nitric oxide is potentiated by dopamine in PC12 cells [J].
Antunes, F ;
Han, D ;
Rettori, D ;
Cadenas, E .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2002, 1556 (2-3) :233-238
[2]   Oxidative stress and S-nitrosylation of proteins in cells [J].
Beltrán, B ;
Orsi, A ;
Clementi, E ;
Moncada, S .
BRITISH JOURNAL OF PHARMACOLOGY, 2000, 129 (05) :953-960
[3]   Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca2+-induced inhibition of substrate oxidation [J].
Borutaite, V ;
Morkuniene, R ;
Brown, GC .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 1999, 1453 (01) :41-48
[4]   Reversal of nitric oxide-, peroxynitrite- and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols [J].
Borutaite, V ;
Budriunaite, A ;
Brown, GC .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1459 (2-3) :405-412
[5]   Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure [J].
Brealey, D ;
Karyampudi, S ;
Jacques, TS ;
Novelli, M ;
Stidwill, R ;
Taylor, V ;
Smolenski, RT ;
Singer, M .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2004, 286 (03) :R491-R497
[6]   Association between mitochondrial dysfunction and severity and outcome of septic shock [J].
Brealey, D ;
Brand, M ;
Hargreaves, I ;
Heales, S ;
Land, J ;
Smolenski, R ;
Davies, NA ;
Cooper, CE ;
Singer, M .
LANCET, 2002, 360 (9328) :219-223
[7]  
Brookes PS, 1998, J NEUROCHEM, V70, P2195
[8]   Nitric oxide and mitochondrial respiration [J].
Brown, GC .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1999, 1411 (2-3) :351-369
[9]   Nitric oxide, mitochondria, and cell death [J].
Brown, GC ;
Borutaite, V .
IUBMB LIFE, 2001, 52 (3-5) :189-195
[10]   NANOMOLAR CONCENTRATIONS OF NITRIC-OXIDE REVERSIBLY INHIBIT SYNAPTOSOMAL RESPIRATION BY COMPETING WITH OXYGEN AT CYTOCHROME-OXIDASE [J].
BROWN, GC ;
COOPER, CE .
FEBS LETTERS, 1994, 356 (2-3) :295-298