A kinetic model for step flow growth in molecular beam epitaxy

被引:4
作者
Balykov, Lev [1 ]
Voigt, Axel [1 ]
机构
[1] Res Ctr Caesar, Crystal Growth Grp, D-53175 Bonn, Germany
关键词
epitaxy; step flow; kinetic theory;
D O I
10.1016/j.susc.2006.06.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A terrace-step-kink model for epitaxial step flow growth of steps with no bonds along them is derived from kinetic arguments. The model is combined with an existing model for the steps that have strong bonding along them to describe steps of arbitrary orientation in terms of densities of adatoms, step adatoms and kinks. A planar steady-state solution for a simplified version of the model is constructed and analyzed. Different mass transport mechanisms are modeled that result in different far-from-equilibrium behavior, confirming that edge diffusion is the main factor stabilizing the steps during growth. Furthermore kinetic Wulff shapes are constructed from the calculated step velocities. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3436 / 3445
页数:10
相关论文
共 25 条
[1]  
Aleiner I. L., 1992, Soviet Physics - Solid State, V34, P809
[2]   MORPHOLOGICAL INSTABILITY OF A TERRACE EDGE DURING STEP-FLOW GROWTH [J].
BALES, GS ;
ZANGWILL, A .
PHYSICAL REVIEW B, 1990, 41 (09) :5500-5508
[3]   Kinetic model for step flow growth of [100] steps [J].
Balykov, L ;
Voigt, A .
PHYSICAL REVIEW E, 2005, 72 (02)
[4]   A 2+1-dimensional terrace-step-kink model for epitaxial growth far from equilibrium [J].
Balykov, Lev ;
Voigt, Axel .
MULTISCALE MODELING & SIMULATION, 2006, 5 (01) :45-61
[5]   Kinetics of non-equilibrium step structure [J].
Balykov, LN ;
Kitamura, M ;
Maksimov, IL ;
Nishioka, K .
PHILOSOPHICAL MAGAZINE LETTERS, 1998, 78 (05) :411-418
[6]   Mean-field theory of kinetic smoothening of growth steps [J].
Balykov, LN ;
Kitamura, M ;
Maksimov, IL ;
Nishioka, K .
EUROPHYSICS LETTERS, 2000, 52 (06) :692-697
[7]   THE GROWTH OF CRYSTALS AND THE EQUILIBRIUM STRUCTURE OF THEIR SURFACES [J].
BURTON, WK ;
CABRERA, N ;
FRANK, FC .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 243 (866) :299-358
[8]  
BYCKLING M, 2005, COMPUTATIONAL PROBLE, V18, P31
[9]   Kinetic model for a step edge in epitaxial growth [J].
Caflisch, RE ;
Weinan, E ;
Gyure, MF ;
Merriman, B ;
Ratsch, C .
PHYSICAL REVIEW E, 1999, 59 (06) :6879-6887
[10]   ATOMIC VIEW OF SURFACE SELF-DIFFUSION - TUNGSTEN ON TUNGSTEN [J].
EHRLICH, G ;
HUDDA, FG .
JOURNAL OF CHEMICAL PHYSICS, 1966, 44 (03) :1039-&