Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane

被引:123
作者
Rotblat, B
Prior, IA
Muncke, C
Parton, RG
Kloog, Y
Henis, YI
Hancock, JF
机构
[1] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Biomed Sci, Brisbane, Qld 4072, Australia
[4] Tel Aviv Univ, George S Wise Fac Life Sci, Dept Neurobiochem, IL-69978 Tel Aviv, Israel
[5] Univ Liverpool, Physiol Lab, Liverpool L69 3BX, Merseyside, England
基金
英国惠康基金;
关键词
D O I
10.1128/MCB.24.15.6799-6810.2004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The microlocalization of Ras proteins to different microdomains of the plasma membrane is critical for signaling specificity. Here we examine the complex membrane interactions of H-ras with a combination of FRAP on live cells to measure membrane affinity and electron microscopy of intact plasma membrane sheets to spatially map microdomains. We show that three separable forces operate on H-ras at the plasma membrane. The lipid anchor, comprising a processed CAAX motif and two palmitic acid residues, generates one attractive force that provides a high-affinity interaction with lipid rafts. The adjacent hypervariable linker domain provides a second attractive force but for nonraft plasma membrane microdomains. Operating against the attractive interaction of the lipid anchor for lipid rafts is a repulsive force generated by the N-terminal catalytic domain that increases when H-ras is GTP loaded. These observations lead directly to a novel mechanism that explains how H-ras lateral segregation is regulated by activation state: GTP loading decreases H-ras affinity for lipid rafts and allows the hypervariable linker domain to target to nonraft microdomains, the primary site of H-ras signaling.
引用
收藏
页码:6799 / 6810
页数:12
相关论文
共 29 条
[1]   Cell biology - A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains [J].
Anderson, RGW ;
Jacobson, K .
SCIENCE, 2002, 296 (5574) :1821-1825
[2]   MOBILITY MEASUREMENT BY ANALYSIS OF FLUORESCENCE PHOTOBLEACHING RECOVERY KINETICS [J].
AXELROD, D ;
KOPPEL, DE ;
SCHLESSINGER, J ;
ELSON, E ;
WEBB, WW .
BIOPHYSICAL JOURNAL, 1976, 16 (09) :1055-1069
[3]   Relationship of lipid rafts to transient confinement zones detected by single particle tracking [J].
Dietrich, C ;
Yang, B ;
Fujiwara, T ;
Kusumi, A ;
Jacobson, K .
BIOPHYSICAL JOURNAL, 2002, 82 (01) :274-284
[4]  
Ehrlich M, 2001, J CELL SCI, V114, P1777
[5]   ANALYSIS OF CELL-SURFACE INTERACTIONS BY MEASUREMENTS OF LATERAL MOBILITY [J].
ELSON, EL ;
REIDLER, JA .
JOURNAL OF SUPRAMOLECULAR STRUCTURE, 1979, 12 (04) :481-489
[6]   Phospholipids undergo hop diffusion in compartmentalized cell membrane [J].
Fujiwara, T ;
Ritchie, K ;
Murakoshi, H ;
Jacobson, K ;
Kusumi, A .
JOURNAL OF CELL BIOLOGY, 2002, 157 (06) :1071-1081
[7]   Ras proteins: Different signals from different locations [J].
Hancock, JF .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (05) :373-384
[8]   Lipid domain structure of the plasma membrane revealed by patching of membrane components [J].
Harder, T ;
Scheiffele, P ;
Verkade, P ;
Simons, K .
JOURNAL OF CELL BIOLOGY, 1998, 141 (04) :929-942
[9]   Regulated cleavage of sterol regulatory element binding proteins requires sequences on both sides of the endoplasmic reticulum membrane [J].
Hua, XX ;
Sakai, J ;
Brown, MS ;
Goldstein, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (17) :10379-10384
[10]   Rac2 regulation of phospholipase C-β2 activity and mode of membrane interactions in intact cells [J].
Illenberger, D ;
Walliser, C ;
Strobel, J ;
Gutman, O ;
Niv, H ;
Gaidzik, V ;
Kloog, Y ;
Gierschik, P ;
Henis, YI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (10) :8645-8652