Discontinuity of the magnetization in diluted O(n)-models

被引:11
作者
Chayes, L [1 ]
Shlosman, SB
Zagrebnov, VA
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[2] CNRS, CPT, Marseille, France
[3] Univ Mediterranee, Dept Phys, Marseille, France
关键词
annealed dilute systems; magnetic order; aggregation; phase separation;
D O I
10.1023/A:1018659005327
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the annealed site-diluted versions of the classical O(n) Heisenberg ferromagnets. It is shown that if the temperature is low enough, then at some value of the chemical potential there is phase coexistence between a magnetized, high-density state (liquid-crystal state) and a low-density state (gaseous state) with no magnetic order.
引用
收藏
页码:537 / 549
页数:13
相关论文
共 13 条
[1]   A LATTICE MODEL OF LIQUID-CRYSTALS WITH MATRIX ORDER PARAMETER [J].
ANGELESCU, N ;
ZAGREBNOV, VA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (11) :L639-L643
[2]   The isotropic O(3) model and the Wolff representation [J].
Campbell, M ;
Chayes, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (13) :L255-L259
[3]   Staggered phases in diluted systems with continuous spins [J].
Chayes, L ;
Kotecky, R ;
Shlosman, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (02) :631-640
[4]   AGGREGATION AND INTERMEDIATE PHASES IN DILUTE SPIN SYSTEMS [J].
CHAYES, L ;
KOTECKY, R ;
SHLOSMAN, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (01) :203-232
[5]   Discontinuity of the spin-wave stiffness in the two-dimensional XY model [J].
Chayes, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (03) :623-640
[6]  
DEGENNES PG, 1993, PHYSICS LIQUID CRYST
[7]   PHASE-TRANSITIONS IN ANISOTROPIC LATTICE SPIN SYSTEMS [J].
FROHLICH, J ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 60 (03) :233-267
[8]  
FROHLICH J, 1978, COMMUN MATH PHYS, V62, P1, DOI 10.1007/BF01940327
[9]   On the interplay of magnetic and molecular forces in Curie-Weiss ferrofluid models [J].
Georgii, HO ;
Zagrebnov, V .
JOURNAL OF STATISTICAL PHYSICS, 1998, 93 (1-2) :79-107
[10]   1ST-ORDER PHASE-TRANSITIONS IN LARGE ENTROPY LATTICE MODELS [J].
KOTECKY, R ;
SHLOSMAN, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (04) :493-515