Survival probability of a Gaussian non-Markovian process: Application to the T=0 dynamics of the Ising model

被引:115
作者
Majumdar, SN [1 ]
Sire, C [1 ]
机构
[1] UNIV TOULOUSE 3, UMR C5626 CNRS, PHYS QUANT LAB, F-31062 TOULOUSE, FRANCE
关键词
D O I
10.1103/PhysRevLett.77.1420
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the decay of the probability for a non-Markovian stationary Gaussian walker not to cross the origin up to time t. This result is then used to evaluate the fraction of spins that do not flip up to time t in the zero temperature Monte Carlo spin flip dynamics of the Ising model. Our results are compared to extensive numerical simulations.
引用
收藏
页码:1420 / 1423
页数:4
相关论文
共 26 条
[21]   COARSENING IN THE Q-STATE POTTS-MODEL AND THE ISING-MODEL WITH GLOBALLY CONSERVED MAGNETIZATION [J].
SIRE, C ;
MAJUMDAR, SN .
PHYSICAL REVIEW E, 1995, 52 (01) :244-254
[22]   CORRELATIONS AND COARSENING IN THE Q-STATE POTTS-MODEL [J].
SIRE, C ;
MAJUMDAR, SN .
PHYSICAL REVIEW LETTERS, 1995, 74 (21) :4321-4324
[23]  
SIRE C, IN PRESS
[24]   1-SIDED BARRIER PROBLEM FOR GAUSSIAN NOISE [J].
SLEPIAN, D .
BELL SYSTEM TECHNICAL JOURNAL, 1962, 41 (02) :463-+
[25]   ISING SPINODAL DECOMPOSITION AT T = 0 IN ONE TO 5 DIMENSIONS [J].
STAUFFER, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (14) :5029-5032
[26]  
van Kampen N.G, 1981, STOCHASTIC PROCESSES