Myocytes from neonatal rat hearts were used to assess the conductive properties of gap junction channels by means of the dual voltage-clamp method. The experiments were carried out on three types (groups) of preparations: (1) induced cell pairs, (2) preformed cell pairs with few gap junction channels (1 to 3 channels), and (3) preformed cell pairs with many channels (100 to 200 channels) after treatment with uncoupling agents such as SKF-525A (75 mu mol/L), heptanol (3 mmol/L), and arachidonic acid (100 mu mol/L). In group 1, the first opening of a newly formed channel was slow (20 to 65 ms) and occurred 7 to 25 minutes after physical cell contact. The rate of channel insertion was 1.3 channels/min. Associated with a junctional voltage gradient (V-j), the channels revealed multiple conductances, a main open state [gamma(j)(main state)], several substates [gamma(j)(substates)], and a residual state [gamma(j)(residual state)]. On rare occasions, the channels closed com completely. The same phenomena were observed in groups 2 and 3. The existence of gamma(j)(residual state) provides an explanation for the incomplete inactivation of the junctional current (I-j) at large values of V-j in cell pairs with many gap junction channels. The values of gamma(j)(main state) and gamma(j)(residual state) gained from groups 1, 2, and 3 turned out to be comparable and hence were pooled. The fit of the data to a Gaussian distribution revealed a narrow single peak for both conductances. The values of gamma(j) were dependent on the composition of the pipette solution. Solutions were as follows: (1) KCl solution, gamma(j)(main state)=96 pS and gamma(j)(residual state)=23 pS; (2) Cs+ aspartate(-) solution, gamma(j)(main state)=61 pS and gamma(j)(residual state)=12 pS; and (3) tetraethylammonium(+) aspartate(-) solution, gamma(j)(main state)=19 pS and gamma(j)(residual state)=3 pS. The respective gamma(j)(main state)to-gamma(j)(residual state) ratios were 4.2, 5.1, and 6.3. This indicates that the residual state restricts ion permeation more efficiently than does the main state. Transitions of I-j between open states (main open state, substates, and residual state) were fast (<2 ms), and transitions involving the closed state and an open state were slow (15 to 65 ms). This implies the existence of two gating mechanisms. The residual state may be regarded as the ground state of electrical gating controlled by V-j; the closed state, as the ground state of chemical gating.