Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process

被引:73
作者
Brzezniak, Z [1 ]
Peszat, S
机构
[1] Univ Hull, Dept Pure Math, Hull HU6 7RX, N Humberside, England
[2] Polish Acad Sci, Inst Math, PL-31027 Krakow, Poland
关键词
stochastic partial differential equations in L-q-spaces; homogeneous Wiener process; random environment; stochastic integration in Banach spaces;
D O I
10.4064/sm-137-3-261-299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Stochastic partial differential equations on R-d are considered. The noise is supposed to be a spatially homogeneous Wiener process. Using the theory of stochastic integration in Banach spaces we show the existence of a Markovian solution in a certain weighted L-q-space. Then we obtain the existence of a space continuous solution by means of the Da Prate, Kwapien and Zabczyk factorization identity for stochastic convolutions.
引用
收藏
页码:261 / 299
页数:39
相关论文
共 40 条
[21]  
ITO K, 1984, FDN STOCHASTIC DIFFE
[22]   COMPARISON METHODS FOR A CLASS OF FUNCTION VALUED STOCHASTIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
KOTELENEZ, P .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 93 (01) :1-19
[23]  
Kotelenez Peter, 1992, Stochastics Stochastics Rep., V41, P177, DOI [10.1080/17442509208833801, DOI 10.1080/17442509208833801]
[24]  
Kuo H. H., 1975, LECT NOTES MATH, V463
[25]  
MANTHEY R, 1999, STOCHASTICS STOCHAST, V66, P37
[26]  
Marcus M. B., 1981, RANDOM FOURIER SERIE
[27]  
NEIDHARDT AL, 1978, THESIS U WISCONSIN
[28]  
NOBEL J, 1997, NONLINEAR ANAL-THEOR, V28, P103
[29]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI [10.1007/978-1-4612-5561-1, DOI 10.1007/978-1-4612-5561-1]
[30]   STRONG FELLER PROPERTY AND IRREDUCIBILITY FOR DIFFUSIONS ON HILBERT-SPACES [J].
PESZAT, S ;
ZABCZYK, J .
ANNALS OF PROBABILITY, 1995, 23 (01) :157-172