Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana

被引:199
作者
De Vos, Martin [1 ]
Jander, Georg [1 ]
机构
[1] Cornell Univ, Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA
关键词
aphid; aphid saliva; gene expression; glucosinolates; microarray; plant-insect interactions; salivary proteins; RESISTANCE GENE MI; PLANT DEFENSE; TRANSCRIPTOME CHANGES; ACYRTHOSIPHON-PISUM; RUSSIAN WHEAT; ATP SYNTHASE; IDENTIFICATION; PROTEINS; TOMATO; PHYTOALEXIN-DEFICIENT4;
D O I
10.1111/j.1365-3040.2009.02019.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Myzus persicae (green peach aphid) feeding on Arabidopsis thaliana induces a defence response, quantified as reduced aphid progeny production, in infested leaves but not in other parts of the plant. Similarly, infiltration of aphid saliva into Arabidopsis leaves causes only a local increase in aphid resistance. Further characterization of the defence-eliciting salivary components indicates that Arabidopsis recognizes a proteinaceous elicitor with a size between 3 and 10 kD. Genetic analysis using well-characterized Arabidopsis mutants shows that saliva-induced resistance against M. persicae is independent of the known defence signalling pathways involving salicylic acid, jasmonate and ethylene. Among 78 Arabidopsis genes that were induced by aphid saliva infiltration, 52 had been identified previously as aphid-induced, but few are responsive to the well-known plant defence signalling molecules salicylic acid and jasmonate. Quantitative PCR analyses confirm expression of saliva-induced genes. In particular, expression of a set of O-methyltransferases, which may be involved in the synthesis of aphid-repellent glucosinolates, was significantly up-regulated by both M. persicae feeding and treatment with aphid saliva. However, this did not correlate with increased production of 4-methoxyindol-3-ylmethylglucosinolate, suggesting that aphid salivary components trigger an Arabidopsis defence response that is independent of this aphid-deterrent glucosinolate.
引用
收藏
页码:1548 / 1560
页数:13
相关论文
共 61 条
[1]   Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles [J].
Alborn, Hans T. ;
Hansen, Trond V. ;
Jones, Tappey H. ;
Bennett, Derrick C. ;
Tumlinson, James H. ;
Schmelz, Eric A. ;
Teal, Peter E. A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (32) :12976-12981
[2]   An elicitor of plant volatiles from beet armyworm oral secretion [J].
Alborn, HT ;
Turlings, TCJ ;
Jones, TH ;
Stenhagen, G ;
Loughrin, JH ;
Tumlinson, JH .
SCIENCE, 1997, 276 (5314) :945-949
[3]   Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense [J].
Barth, C ;
Jander, G .
PLANT JOURNAL, 2006, 46 (04) :549-562
[4]   A Glucosinolate Metabolism Pathway in Living Plant Cells Mediates Broad-Spectrum Antifungal Defense [J].
Bednarek, Pawel ;
Pislewska-Bednarek, Mariola ;
Svatos, Ales ;
Schneider, Bernd ;
Doubsky, Jan ;
Mansurova, Madina ;
Humphry, Matt ;
Consonni, Chiara ;
Panstruga, Ralph ;
Sanchez-Vallet, Andrea ;
Molina, Antonio ;
Schulze-Lefert, Paul .
SCIENCE, 2009, 323 (5910) :101-106
[5]   Functional annotation of the Arabidopsis genome using controlled vocabularies [J].
Berardini, TZ ;
Mundodi, S ;
Reiser, L ;
Huala, E ;
Garcia-Hernandez, M ;
Zhang, PF ;
Mueller, LA ;
Yoon, J ;
Doyle, A ;
Lander, G ;
Moseyko, N ;
Yoo, D ;
Xu, I ;
Zoeckler, B ;
Montoya, M ;
Miller, N ;
Weems, D ;
Rhee, SY .
PLANT PHYSIOLOGY, 2004, 135 (02) :745-755
[6]  
Blackman R. L., 2000, Aphids on the worlds crops: an identification and information guide, V2
[7]   The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry [J].
Carolan, James C. ;
Fitzroy, Carol I. J. ;
Ashton, Peter D. ;
Douglas, Angela E. ;
Wilkinson, Thomas L. .
PROTEOMICS, 2009, 9 (09) :2457-2467
[8]   Salivary proteins of aphids, a pilot study on identification, separation and immunolocalisation [J].
Cherqui, A ;
Tjallingii, WF .
JOURNAL OF INSECT PHYSIOLOGY, 2000, 46 (08) :1177-1186
[9]   Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response [J].
Clay, Nicole K. ;
Adio, Adewale M. ;
Denoux, Carine ;
Jander, Georg ;
Ausubel, Frederick M. .
SCIENCE, 2009, 323 (5910) :95-101
[10]   Exploring plant responses to aphid feeding using a full Arabidopsis microarray reveals a small number of genes with significantly altered expression [J].
Couldridge, C. ;
Newbury, H. J. ;
Ford-Lloyd, B. ;
Bale, J. ;
Pritchard, J. .
BULLETIN OF ENTOMOLOGICAL RESEARCH, 2007, 97 (05) :523-532