Large contribution of natural aerosols to uncertainty in indirect forcing

被引:751
作者
Carslaw, K. S. [1 ]
Lee, L. A. [1 ]
Reddington, C. L. [1 ]
Pringle, K. J. [1 ]
Rap, A. [1 ]
Forster, P. M. [1 ]
Mann, G. W. [1 ,2 ]
Spracklen, D. V. [1 ]
Woodhouse, M. T. [1 ]
Regayre, L. A. [1 ]
Pierce, J. R. [3 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Natl Ctr Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England
[3] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
基金
英国自然环境研究理事会; 英国工程与自然科学研究理事会;
关键词
CLOUD CONDENSATION NUCLEI; SULFATE AEROSOL; NUMBER CONCENTRATIONS; GLOBAL-MODEL; GLOMAP-MODE; CLIMATE; SENSITIVITY; IMPACT; EMISSIONS; MICROPHYSICS;
D O I
10.1038/nature12674
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The effect of anthropogenic aerosols on cloud droplet concentrations and radiative properties is the source of one of the largest uncertainties in the radiative forcing of climate over the industrial period. This uncertainty affects our ability to estimate how sensitive the climate is to greenhouse gas emissions. Here we perform a sensitivity analysis on a global model to quantify the uncertainty in cloud radiative forcing over the industrial period caused by uncertainties in aerosol emissions and processes. Our results show that 45 per cent of the variance of aerosol forcing since about 1750 arises from uncertainties in natural emissions of volcanic sulphur dioxide, marine dimethylsulphide, biogenic volatile organic carbon, biomass burning and sea spray. Only 34 per cent of the variance is associated with anthropogenic emissions. The results point to the importance of understanding pristine pre-industrial-like environments, with natural aerosols only, and suggest that improved measurements and evaluation of simulated aerosols in polluted present-day conditions will not necessarily result in commensurate reductions in the uncertainty of forcing estimates.
引用
收藏
页码:67 / +
页数:13
相关论文
共 67 条
[1]   The impact of humidity above stratiform clouds on indirect aerosol climate forcing [J].
Ackerman, AS ;
Kirkpatrick, MP ;
Stevens, DE ;
Toon, OB .
NATURE, 2004, 432 (7020) :1014-1017
[2]   Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols [J].
Andreae, M. O. ;
Rosenfeld, D. .
EARTH-SCIENCE REVIEWS, 2008, 89 (1-2) :13-41
[3]   Aerosols before pollution [J].
Andreae, Meinrat O. .
SCIENCE, 2007, 315 (5808) :50-51
[4]   Strong present-day aerosol cooling implies a hot future [J].
Andreae, MO ;
Jones, CD ;
Cox, PM .
NATURE, 2005, 435 (7046) :1187-1190
[5]   A time-averaged inventory of subaerial volcanic sulfur emissions [J].
Andres, RJ ;
Kasgnoc, AD .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D19) :25251-25261
[6]   A three-dimensional model study of the effect of new temperature-dependent quantum yields for acetone photolysis [J].
Arnold, SR ;
Chipperfield, MP ;
Blitz, MA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D22) :1-14
[7]  
Bastos L., 2011, TECHNOMETRICS, V4, P425
[8]   Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model [J].
Bellouin, N. ;
Mann, G. W. ;
Woodhouse, M. T. ;
Johnson, C. ;
Carslaw, K. S. ;
Dalvi, M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (06) :3027-3044
[9]   Estimates of aerosol radiative forcing from the MACC re-analysis [J].
Bellouin, N. ;
Quaas, J. ;
Morcrette, J. -J. ;
Boucher, O. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (04) :2045-2062
[10]   A technology-based global inventory of black and organic carbon emissions from combustion [J].
Bond, TC ;
Streets, DG ;
Yarber, KF ;
Nelson, SM ;
Woo, JH ;
Klimont, Z .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D14) :D14203