QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens

被引:88
作者
Deniau, A. X.
Pieper, B.
Ten Bookum, W. M.
Lindhout, P.
Aarts, M. G. M.
Schat, H.
机构
[1] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands
[2] Univ Wageningen & Res Ctr, Genet Lab, NL-6708 PB Wageningen, Netherlands
[3] Duiter Seeds R&D NL BV, NL-2660 BB Bergschenhoek, Netherlands
关键词
D O I
10.1007/s00122-006-0350-y
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Thlaspi caerulescens (Tc; 2n = 14) is a natural Zn, Cd and Ni hyperaccumulator species belonging to the Brassicaceae family. It shares 88% DNA identity in the coding regions with Arabidopsis thaliana (At) (Rigola et al. 2006). Although the physiology of heavy metal (hyper)accumulation has been intensively studied, the molecular genetics are still largely unexplored. We address this topic by constructing a genetic map based on AFLP (R) markers and expressed sequence tags (ESTs). To establish a genetic map, an F-2 population of 129 individuals was generated from a cross between a plant from a Pb/Cd/Zn-contaminated site near La Calamine, Belgium, and a plant from a comparable site near Ganges (GA), France. These two accessions show different degrees of Zn and, particularly, Cd accumulation. We analyzed 181 AFLP markers (of which 4 co-dominant) and 13 co-dominant EST sequences-based markers and mapped them to seven linkage groups (LGs), presumably corresponding to the seven chromosomes of T. caerulescens. The total length of the genetic map is 496 cM with an average density of one marker every 2.5 cM. This map was used for Quantitative Trait Locus (QTL) mapping in the F-2. For Zn as well as Cd concentration in root we mapped two QTLs. Three QTLs and one QTL were mapped for Zn and Cd concentration in shoot, respectively. These QTLs explain 23.8-60.4% of the total variance of the traits measured. We found only one common locus (LG6) for Zn and Cd (concentration in root) and one common locus for shoot and root concentrations of Zn (LG1) and of Cd (LG3). For all QTLs, the GA allele increased the trait value except for two QTLs for Zn accumulation in shoot (LG1 and LG4) and one for Zn concentration in root (LG1).
引用
收藏
页码:907 / 920
页数:14
相关论文
共 35 条
[1]   Naturally occurring variation in Arabidopsis:: an underexploited resource for plant genetics [J].
Alonso-Blanco, C ;
Koornneef, M .
TRENDS IN PLANT SCIENCE, 2000, 5 (01) :22-29
[2]   Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population [J].
Alonso-Blanco, C ;
Peeters, AJM ;
Koornneef, M ;
Lister, C ;
Dean, C ;
van den Bosch, N ;
Pot, J ;
Kuiper, MTR .
PLANT JOURNAL, 1998, 14 (02) :259-271
[3]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P3
[4]   Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types [J].
Assunçao, AGL ;
Bookum, WM ;
Nelissen, HJM ;
Vooijs, R ;
Schat, H ;
Ernst, WHO .
NEW PHYTOLOGIST, 2003, 159 (02) :411-419
[5]   A cosegregation analysis of zinc (Zn) accumulation and Zn tolerance in the Zn hyperaccumulator Thlaspi caerulescens [J].
Assunçao, AGL ;
Ten Bookum, WM ;
Nelissen, HJM ;
Vooijs, R ;
Schat, H ;
Ernst, WHO .
NEW PHYTOLOGIST, 2003, 159 (02) :383-390
[6]   Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens [J].
Assunçao, AGL ;
Martins, PD ;
De Folter, S ;
Vooijs, R ;
Schat, H ;
Aarts, MGM .
PLANT CELL AND ENVIRONMENT, 2001, 24 (02) :217-226
[7]   Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants [J].
Assunçao, AGL ;
Schat, H ;
Aarts, MGM .
NEW PHYTOLOGIST, 2003, 159 (02) :351-360
[8]   Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation [J].
Assunçao, AGL ;
Pieper, B ;
Vromans, J ;
Lindhout, P ;
Aarts, MGM ;
Schat, H .
NEW PHYTOLOGIST, 2006, 170 (01) :21-32
[9]   RFLP-BASED GENETIC MAPS OF WHEAT HOMOLOGOUS GROUP-7 CHROMOSOMES [J].
CHAO, S ;
SHARP, PJ ;
WORLAND, AJ ;
WARHAM, EJ ;
KOEBNER, RMD ;
GALE, MD .
THEORETICAL AND APPLIED GENETICS, 1989, 78 (04) :495-504
[10]   Heavy metals and plants - model systems and hyperaccumulators [J].
Cobbett, C .
NEW PHYTOLOGIST, 2003, 159 (02) :289-293