Stabilization of nonholonomic systems using isospectral flows

被引:24
作者
Bloch, AM [1 ]
Drakunov, SV
Kinyon, MK
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Tulane Univ, Dept Elect Engn & Comp Sci, New Orleans, LA 70118 USA
[3] Indiana Univ, Dept Math & Comp Sci, South Bend, IN 46634 USA
关键词
nonlinear control; nonholonomic systems; isospectral flows; Lie theory;
D O I
10.1137/S0363012998335607
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we derive and analyze a discontinuous stabilizing feedback for a Lie algebraic generalization of a class of kinematic nonholonomic systems introduced by Brockett [New Directions in Applied Mathematics, P. Hilton and G. Young, eds., Springer-Verlag, New York, 1982, pp. 11-27]. The algorithm involves discrete switching between isospectral and norm-decreasing flows. We include a rigorous analysis of the convergence.
引用
收藏
页码:855 / 874
页数:20
相关论文
共 30 条
[1]   Stabilization and tracking in the nonholonomic integrator via sliding modes [J].
Bloch, A ;
Drakunov, S .
SYSTEMS & CONTROL LETTERS, 1996, 29 (02) :91-99
[2]  
Bloch A, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P2103, DOI 10.1109/CDC.1995.480510
[3]  
Bloch A, 1997, IEEE DECIS CONTR P, P4260, DOI 10.1109/CDC.1997.649505
[4]  
BLOCH A, 1994, IEEE DECIS CONTR P, P2961, DOI 10.1109/CDC.1994.411342
[5]   NONHOLONOMIC CONTROL-SYSTEMS ON RIEMANNIAN-MANIFOLDS [J].
BLOCH, AM ;
CROUCH, PE .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (01) :126-148
[6]   COMPLETELY INTEGRABLE GRADIENT FLOWS [J].
BLOCH, AM ;
BROCKETT, RW ;
RATIU, TS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :57-74
[7]   Nonholonomic mechanical systems with symmetry [J].
Bloch, AM ;
Krishnaprasad, PS ;
Marsden, JE ;
Murray, RM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 136 (01) :21-99
[8]   CONTROL AND STABILIZATION OF NONHOLONOMIC DYNAMIC-SYSTEMS [J].
BLOCH, AM ;
REYHANOGLU, M ;
MCCLAMROCH, NH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (11) :1746-1757
[9]   Optimal control and geodesic flows [J].
Bloch, AM ;
Crouch, PE .
SYSTEMS & CONTROL LETTERS, 1996, 28 (02) :65-72
[10]  
BLOCH AM, 1998, IMA VOL MATH APPL, V104, P169