Signalling pathways in ischaemic postconditioning

被引:69
作者
Hausenloy, Derek J. [1 ]
机构
[1] UCL, Hosp & Med Sch, Hatter Cardiovasc Inst, London WC1E 6HX, England
关键词
Reperfusion injury; ischaemic postconditioning; protein kinases; mitochondrial permeability transition pore; myocardial infarction; MITOCHONDRIAL PERMEABILITY TRANSITION; REDUCES INFARCT SIZE; PROTEIN-KINASE-C; SENSITIVE K+ CHANNEL; BRADYKININ B-2 RECEPTORS; REPERFUSION INJURY; RABBIT HEARTS; CELL-DEATH; ADENOSINE RECEPTORS; HYDROGEN-SULFIDE;
D O I
10.1160/TH08-11-0734
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Coronary heart disease (CHD) is the leading cause of death globally. Following an acute coronary artery occlusion, timely myocardial reperfusion using either primary percutaneous coronary intervention (PCI) or thrombolytic therapy remains the most effective treatment strategy for reducing myocardial infarct size, preventing left ventricular remodelling, preserving left ventricular systolic function and improving clinical outcomes. However,the full benefits of myocardial reperfusion are not realised, given that the actual process of reperfusing ischaemic myocardium can independently induce cell death - a phenomenon termed lethal reperfusion injury. Ischaemic postconditioning represents an innovative treatment strategy for limiting lethal myocardial reperfusion injury and further reducing myocardial infarct size for those patients undergoing primary PCI. It is achieved by interrupting the normal myocardial reperfusion process, with several intermittent episodes of coronary myocardial ischaemia induced by low-pressure inflations of the angioplasty balloon in the infarct-related coronary artery. Experimental studies demonstrate that this stuttered form of myocardial reperfusion improves myocardial perfusion, maintains endothelial function, attenuates apoptotic cell death, reduces myocardial infarct size, preserves left ventricular systolic function and reduces mortality. The mechanisms underlying the cardioprotective effect of ischaemic postconditioning are the subject of intense investigation. In this article we review the signalling pathways which have been implicated as potential mediators of ischaemic postconditioning, the identification of which have provided novel pharmacological targets of cardioprotection capable of recapitulating the protective benefits of ischaemic postconditioning.
引用
收藏
页码:626 / 634
页数:9
相关论文
共 102 条
[1]   Insulin protects cardiomyocytes against reoxygenation-induced hypercontracture by a survival pathway targeting SR Ca2+ storage [J].
Abdallah, Yaser ;
Gkatzoflia, Anna ;
Gligorievski, Dragan ;
Kasseckert, Sascha ;
Euler, Gerhild ;
Schlueter, Klaus-Dieter ;
Schaefer, Matthias ;
Piper, Hans-Michael ;
Schaefer, Claudia .
CARDIOVASCULAR RESEARCH, 2006, 70 (02) :346-353
[2]   Postconditioning inhibits mitochondrial permeability transition [J].
Argaud, L ;
Gateau-Roesch, O ;
Raisky, O ;
Loufouat, J ;
Robert, D ;
Ovize, M .
CIRCULATION, 2005, 111 (02) :194-197
[3]   Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death [J].
Baines, Christopher P. ;
Kaiser, Robert A. ;
Sheiko, Tatiana ;
Craigen, William J. ;
Molkentin, Jeffery D. .
NATURE CELL BIOLOGY, 2007, 9 (05) :550-U122
[4]   Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death [J].
Baines, CP ;
Kaiser, RA ;
Purcell, NH ;
Blair, NS ;
Osinska, H ;
Hambleton, MA ;
Brunskill, EW ;
Sayen, MR ;
Gottlieb, RA ;
Dorn, GW ;
Robbins, J ;
Molkentin, JD .
NATURE, 2005, 434 (7033) :658-662
[5]   Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium [J].
Baines, CP ;
Goto, M ;
Downey, JM .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1997, 29 (01) :207-216
[6]   Targeting p38-MAPK in the ischaemic heart: kill or cure? [J].
Bassi, Rekha ;
Heads, Richard ;
Marber, Michael S. ;
Clark, James E. .
CURRENT OPINION IN PHARMACOLOGY, 2008, 8 (02) :141-146
[7]   Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart: the role of PI3K, Akt and eNOS [J].
Bell, RM ;
Yellon, DM .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2003, 35 (02) :185-193
[8]   Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes [J].
Bian, JS ;
Yong, QC ;
Pan, TT ;
Feng, ZN ;
Ali, MY ;
Zhou, SF ;
Moore, PK .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2006, 316 (02) :670-678
[9]   The myocardial JAK/STAT pathway: From protection to failure [J].
Boengler, Kerstin ;
Hilfiker-Kleiner, Denise ;
Drexler, Helmut ;
Heusch, Gerd ;
Schulz, Rainer .
PHARMACOLOGY & THERAPEUTICS, 2008, 120 (02) :172-185
[10]   Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice [J].
Boengler, Kerstin ;
Buechert, Astrid ;
Heinen, Yvonne ;
Roeskes, Christin ;
Hilfiker-Kleiner, Denise ;
Heusch, Gerd ;
Schulz, Rainer .
CIRCULATION RESEARCH, 2008, 102 (01) :131-135