Hydro-climatic forecasting using sea surface temperatures: methodology and application for the southeast US

被引:18
作者
Chen, Chia-Jeng [1 ]
Georgakakos, Aris P. [1 ]
机构
[1] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
关键词
Seasonal forecasting; Teleconnections; Southeast US climate; Water resources planning; RAINFALL PROBABILISTIC FORECASTS; CANONICAL CORRELATION-ANALYSIS; TROPICAL CYCLONE ACTIVITY; WATER-SUPPLY MANAGEMENT; UNITED-STATES; ATMOSPHERIC DYNAMICS; SEASONAL FORECASTS; AFRICAN RAINFALL; ATLANTIC SST; SHORT RAINS;
D O I
10.1007/s00382-013-1908-4
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Sea surface temperatures (SSTs) are often used for the development of hydro-climatic variable forecasts based on teleconnection methods. Such methods rely on projections or linear combinations of teleconnection indices [e.g. El Nio-Southern Oscillation (ENSO)] and other predictor fields. This study introduces a new hydro-climatic forecasting method identifying SST "dipole" predictors motivated by major teleconnection patterns. An SST dipole is defined as a function of average SST anomalies over two oceanic areas of specific sizes and geographic locations. An optimization algorithm is developed to search for the most significant SST dipole predictors of an external hydro-climatic series based on the Gerrity Skill Score. The significant dipoles are cross-validated and used to generate multiple forecast values. The new method is applied to the forecasting of seasonal precipitation over the southeast US. Hindcasting results show that significant dipoles related to ENSO as well as other prominent patterns at different lead times can indeed be identified. The dipole method also compares favorably with existing statistical forecasting schemes with respect to multiple skill measures. Furthermore, an operational forecasting framework able to produce ensemble forecast traces and uncertainty intervals that can support regional water resources planning and management is also developed.
引用
收藏
页码:2955 / 2982
页数:28
相关论文
共 117 条
[81]  
Mutai CC, 1998, INT J CLIMATOL, V18, P975, DOI 10.1002/(SICI)1097-0088(199807)18:9<975::AID-JOC259>3.0.CO
[82]  
2-U
[83]  
Neter J., 1990, Applied linear statistical models
[84]   A SYSTEM FOR PREDICTING THE ONSET OF THE NORTH-AUSTRALIAN WET-SEASON [J].
NICHOLLS, N .
JOURNAL OF CLIMATOLOGY, 1984, 4 (04) :425-435
[85]  
NICHOLLS N, 1979, MON WEATHER REV, V107, P1221, DOI 10.1175/1520-0493(1979)107<1221:APMFPS>2.0.CO
[86]  
2
[87]   Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER) [J].
Palmer, TN ;
Alessandri, A ;
Andersen, U ;
Cantelaube, P ;
Davey, M ;
Délécluse, P ;
Déqué, M ;
Díez, E ;
Doblas-Reyes, FJ ;
Feddersen, H ;
Graham, R ;
Gualdi, S ;
Guérémy, JF ;
Hagedorn, R ;
Hoshen, M ;
Keenlyside, N ;
Latif, M ;
Lazar, A ;
Maisonnave, E ;
Marletto, V ;
Morse, AP ;
Orfila, B ;
Rogel, P ;
Terres, JM ;
Thomson, MC .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2004, 85 (06) :853-+
[88]  
Peng SL, 2003, J CLIMATE, V16, P1987, DOI 10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO
[89]  
2
[90]   Empirical predictability study of October-December East African rainfall [J].
Philippon, N ;
Camberlin, P ;
Fauchereau, N .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2002, 128 (585) :2239-2256