Two Calretinin-Positive GABAergic Cell Types in Layer 2/3 of the Mouse Neocortex Provide Different Forms of Inhibition

被引:105
作者
Caputi, Antonio [1 ]
Rozov, Andrei [1 ]
Blatow, Maria [2 ]
Monyer, Hannah [1 ]
机构
[1] Univ Heidelberg, Dept Clin Neurobiol, D-69120 Heidelberg, Germany
[2] Univ Heidelberg, Dept Neuroradiol, D-69120 Heidelberg, Germany
关键词
interneuron; gap junctions; oscillations; parvalbumin; short-term plasticity; CORTEX IN-VITRO; PRIMARY VISUAL-CORTEX; RAT FRONTAL-CORTEX; SOMATOSENSORY CORTEX; SYNAPTIC CONNECTIONS; ELECTRICAL SYNAPSES; BARREL CORTEX; THALAMOCORTICAL ACTIVATION; IMMUNOREACTIVE NEURONS; RECEPTOR ACTIVATION;
D O I
10.1093/cercor/bhn175
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Calretinin (CR)-positive GABAergic (gamma-aminobutyric acidergic) interneurons have been suggested to target preferentially other GABAergic cells in the neocortex. To systematically study this cell population in the cortex, we generated transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of the CR promoter and characterized EGFP/CR-positive cells at the cellular and network level. Based on anatomical and electrophysiological characteristics, 2 types of EGFP/CR-positive cells could be distinguished that we termed bipolar (BCR) and multipolar (MCR) CR cells. Both cell types share the feature of preferential interneuron targeting but differ in most other characteristics, including firing pattern, biochemical markers, neurite arborization, and synaptic plasticity. Like many other GABAergic interneurons, BCR cells but not MCR cells exhibit restricted cell type-specific gap junction coupling. Notably, MCR cells are electrically coupled in an asymmetric fashion with GABAergic interneurons of another subtype, the parvalbumin-positive multipolar bursting (MB) cells. Most importantly, the strength of electrical coupling between MCR and MB cells underlies their synchronous activation during carbachol-induced oscillations.
引用
收藏
页码:1345 / 1359
页数:15
相关论文
共 67 条
[1]   THALAMOCORTICAL RESPONSES OF MOUSE SOMATOSENSORY (BARREL) CORTEX INVITRO [J].
AGMON, A ;
CONNORS, BW .
NEUROSCIENCE, 1991, 41 (2-3) :365-379
[2]   The spatial dimensions of electrically coupled networks of interneurons in the neocortex [J].
Amitai, Y ;
Gibson, JR ;
Beierlein, M ;
Patrick, SL ;
Ho, AM ;
Connors, BW ;
Golomb, D .
JOURNAL OF NEUROSCIENCE, 2002, 22 (10) :4142-4152
[3]   CALCIUM-BINDING PROTEINS - SELECTIVE MARKERS OF NERVE-CELLS [J].
ANDRESSEN, C ;
BLUMCKE, I ;
CELIO, MR .
CELL AND TISSUE RESEARCH, 1993, 271 (02) :181-208
[4]   A network of electrically coupled interneurons drives synchronized inhibition in neocortex [J].
Beierlein, M ;
Gibson, JR ;
Connors, BW .
NATURE NEUROSCIENCE, 2000, 3 (09) :904-910
[5]   Two dynamically distinct inhibitory networks in layer 4 of the neocortex [J].
Beierlein, M ;
Gibson, JR ;
Connors, BW .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (05) :2987-3000
[6]   Electrical coupling and neuronal synchronization in the mammalian brain [J].
Bennett, MVL ;
Zukin, RS .
NEURON, 2004, 41 (04) :495-511
[7]   A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex [J].
Blatow, M ;
Rozov, A ;
Katona, I ;
Hormuzdi, SG ;
Meyer, AH ;
Whittington, MA ;
Caputi, A ;
Monyer, H .
NEURON, 2003, 38 (05) :805-817
[8]   Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro [J].
Buhl, EH ;
Tamás, G ;
Fisahn, A .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 513 (01) :117-126
[9]  
Cauli B, 1997, J NEUROSCI, V17, P3894
[10]   Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period [J].
Chattopadhyaya, B ;
Di Cristo, G ;
Higashiyama, H ;
Knott, GW ;
Kuhlman, SJ ;
Welker, E ;
Huang, ZJ .
JOURNAL OF NEUROSCIENCE, 2004, 24 (43) :9598-9611