The square Fibonacci tiling

被引:60
作者
Lifshitz, R [1 ]
机构
[1] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
关键词
quasicrystals; tiling; symmetry; fibonacci; diffraction;
D O I
10.1016/S0925-8388(02)00169-X
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce the 2-dimensional square Fibonacci tiling and its generalization to higher dimensions as models for quasicrystals without 'forbidden' symmetries. We derive some of the basic mathematical properties of the tiling as well as calculate its diffraction pattern. We discuss the relevance of the Fibonacci tiling for quasicrystal research and for applications in other fields. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:186 / 190
页数:5
相关论文
共 16 条
[1]  
CHAIKIN PM, 1995, PRINCIPLES CONDENSED, P680
[2]  
Donnadieu P, 1996, J PHYS I, V6, P1153, DOI 10.1051/jp1:1996121
[3]   Deviations of the Al6Li3Cu quasicrystal from icosahedral symmetry. A reminiscence of a cubic crystal [J].
Donnadieu, Patricia .
Journal De Physique, I, 1994, 4 (05)
[4]   INDEXING PROBLEMS IN QUASICRYSTAL DIFFRACTION [J].
ELSER, V .
PHYSICAL REVIEW B, 1985, 32 (08) :4892-4898
[5]   EXPERIMENTAL-EVIDENCE FOR AND A PROJECTION MODEL OF A CUBIC QUASI-CRYSTAL [J].
FENG, YC ;
LU, G ;
YE, HQ ;
KUO, KH ;
WITHERS, RL ;
VANTENDELOO, G .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (49) :9749-9755
[6]   Multiple-wavelength quasi-phase-matched nonlinear interactions [J].
Fradkin-Kashi, K ;
Arie, A .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1999, 35 (11) :1649-1656
[7]   Multiple nonlinear optical interactions with arbitrary wave vector differences [J].
Fradkin-Kashi, K ;
Arie, A ;
Urenski, P ;
Rosenman, G .
PHYSICAL REVIEW LETTERS, 2002, 88 (02) :4
[8]   Optical transmission spectra of two-dimensional quasiperiodic photonic crystals based on Penrose-tiling and octagonal-tiling systems [J].
Hase, M ;
Egashira, M ;
Shinya, N ;
Miyazaki, H ;
Kojima, KM ;
Uchida, S .
JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 342 (1-2) :455-459
[9]   Theory of color symmetry for periodic and quasiperiodic crystals [J].
Lifshitz, R .
REVIEWS OF MODERN PHYSICS, 1997, 69 (04) :1181-1218
[10]   Symmetry of magnetically ordered quasicrystals [J].
Lifshitz, R .
PHYSICAL REVIEW LETTERS, 1998, 80 (12) :2717-2720