The square Fibonacci tiling

被引:60
作者
Lifshitz, R [1 ]
机构
[1] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
关键词
quasicrystals; tiling; symmetry; fibonacci; diffraction;
D O I
10.1016/S0925-8388(02)00169-X
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce the 2-dimensional square Fibonacci tiling and its generalization to higher dimensions as models for quasicrystals without 'forbidden' symmetries. We derive some of the basic mathematical properties of the tiling as well as calculate its diffraction pattern. We discuss the relevance of the Fibonacci tiling for quasicrystal research and for applications in other fields. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:186 / 190
页数:5
相关论文
共 16 条
[11]   Magnetic quasicrystals: what can we expect to see in their neutron diffraction data? [J].
Lifshitz, R .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 294 :508-511
[12]  
LIFSHITZ R, CONDMAT0008152
[13]   EFFECT OF PHASON STRAIN ON THE TRANSITION OF AN OCTAGONAL QUASI-CRYSTAL TO A BETA-MN-TYPE STRUCTURE [J].
MAI, ZH ;
XU, L ;
WANG, N ;
KUO, KH ;
JIN, ZC ;
CHENG, G .
PHYSICAL REVIEW B, 1989, 40 (18) :12183-12186
[14]   NEW QUASI-PERIODIC PHASE IN AL85CR15 [J].
SELKE, H ;
VOGG, U ;
RYDER, PL .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1994, 141 (01) :31-41
[15]  
Senechal M., 1996, QUASICRYSTALS GEOMET
[16]  
Van Smaalen S., 1995, Cryt. Rev, V4, P79