Crystal structure of alkalophilic asparagine 233-replaced cyclodextrin glucanotransferase complexed with an inhibitor, acarbose, at 2.0 Å resolution

被引:11
作者
Ishii, N [1 ]
Haga, K
Yamane, K
Harata, K
机构
[1] Natl Inst Biosci & Human Technol, Biophys Chem Lab, Tsukuba, Ibaraki 3058566, Japan
[2] Univ Tsukuba, Inst Biol Sci, Tsukuba, Ibaraki 3058572, Japan
关键词
acarbose; CGTase; crystal structure; cyclodextrin glucanotransferase; X-ray crystallography;
D O I
10.1093/oxfordjournals.jbchem.a022619
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The product specificity of cyclodextrin glucanotransferase (CGTase) from alkalophilic Bacillus sp, #1011 is improved to near-uniformity by mutation of histidine-233 to asparagine, Asparagine 233-replaced CGTase (H233N-CGTase) no longer produces ol-cyclodextrin, while the wild-type CGTase from the same bacterium produces a mixture of predominantly alpha-, beta-, and gamma-cyclodextrins, catalyzing the conversion of starch into cyclic or linear alpha-1,4-linked glucopyranosyl chains. In order to better understand the protein engineering of H233N-CGTase, the crystal structure of the mutant enzyme complexed with a maltotetraose analog, acarbose, was determined at 2.0 Angstrom resolution with a final crystallographic R value of 0.163 for all data. Taking a close look at the active site cleft in which the acarbose molecule is bound, the most probable reason for the improved specificity of H233N-CGTase is the removal of interactions needed to form a compact ring like alpha-cyclodextrin.
引用
收藏
页码:383 / 391
页数:9
相关论文
共 31 条
[21]   MOLECULAR-CLONING, NUCLEOTIDE-SEQUENCE AND EXPRESSION IN ESCHERICHIA-COLI OF THE BETA-CYCLODEXTRIN GLYCOSYLTRANSFERASE GENE FROM BACILLUS-CIRCULANS STRAIN NO-8 [J].
NITSCHKE, L ;
HEEGER, K ;
BENDER, H ;
SCHULZ, GE .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1990, 33 (05) :542-546
[22]   STEREOCHEMICAL CRITERIA FOR POLYPEPTIDE AND PROTEIN CHAIN CONFORMATIONS .2. ALLOWED CONFORMATIONS FOR A PAIR OF PEPTIDE UNITS [J].
RAMAKRISHNAN, C ;
RAMACHANDRAN, GN .
BIOPHYSICAL JOURNAL, 1965, 5 (06) :909-+
[23]  
SCHMID G, 1989, TRENDS BIOTECHNOL, V7, P224
[24]   Structure of cyclodextrin glycosyltransferase complexed with a derivative of its main product β-cyclodextrin [J].
Schmidt, AK ;
Cottaz, S ;
Driguez, H ;
Schulz, GE .
BIOCHEMISTRY, 1998, 37 (17) :5909-5915
[25]   Structure of cyclodextrin glycosyltransferase complexed with a maltononaose inhibitor at 2.6 angstrom resolution. Implications for product specificity [J].
Strokopytov, B ;
Knegtel, RMA ;
Penninga, D ;
Rozeboom, HJ ;
Kalk, KH ;
Dijkhuizen, L ;
Dijkstra, BW .
BIOCHEMISTRY, 1996, 35 (13) :4241-4249
[26]   X-RAY STRUCTURE OF CYCLODEXTRIN GLYCOSYLTRANSFERASE COMPLEXED WITH ACARBOSE - IMPLICATIONS FOR THE CATALYTIC MECHANISM OF GLYCOSIDASES [J].
STROKOPYTOV, B ;
PENNINGA, D ;
ROZEBOOM, HJ ;
KALK, KH ;
DIJKHUIZEN, L ;
DIJKSTRA, BW .
BIOCHEMISTRY, 1995, 34 (07) :2234-2240
[27]  
SZJITLI S, 1988, CYCLODEXTRIN TECHNOL
[28]  
SZJITLI S, 1982, CYCLODEXTRINS THEIR
[29]   CHARACTERIZATION OF BACILLUS-STEAROTHERMOPHILUS CYCLODEXTRIN GLUCANOTRANSFERASE IN ASCORBIC-ACID 2-O-ALPHA-GLUCOSIDE FORMATION [J].
TANAKA, M ;
MUTO, N ;
YAMAMOTO, I .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1078 (02) :127-132
[30]   PURIFICATION AND PROPERTIES OF A CYCLODEXTRIN GLUCANOTRANSFERASE FROM BACILLUS-AUTOLYTICUS-11149 AND SELECTIVE FORMATION OF BETA-CYCLODEXTRIN [J].
TOMITA, K ;
KANEDA, M ;
KAWAMURA, K ;
NAKANISHI, K .
JOURNAL OF FERMENTATION AND BIOENGINEERING, 1993, 75 (02) :89-92