Stress condensation in crushed elastic manifolds

被引:86
作者
Kramer, EM
Witten, TA
机构
[1] UNIV CHICAGO,JAMES FRANCK INST,CHICAGO,IL 60637
[2] UNIV CHICAGO,DEPT PHYS,CHICAGO,IL 60637
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.78.1303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss an M-dimensional phantom elastic manifold of linear size L crushed into a small sphere of radius R much less than L in N-dimensional space. We investigate the low elastic energy states of 2-sheets (M = 2) and a-sheets (M = 3) using analytic methods and lattice simulations. When N greater than or equal to 2M the curvature energy is uniformly distributed in the sheet and the strain energy is negligible. But when N = M + 1 and M > 1, both energies appear to be condensed into a network of narrow M - 1 dimensional ridges. The ridges appear straight over distances comparable to the confining radius R.
引用
收藏
页码:1303 / 1306
页数:4
相关论文
共 17 条
[1]  
[Anonymous], 1977, ELEMENTS DIFFERENTIA
[2]  
EISENHART LP, 1909, DIFFERENTIAL GEOMETR
[3]  
HULL D, 1975, INTRO DISLOCATIONS
[4]   STATISTICAL-MECHANICS OF TETHERED SURFACES [J].
KANTOR, Y ;
KARDAR, M ;
NELSON, DR .
PHYSICAL REVIEW LETTERS, 1986, 57 (07) :791-794
[5]   The von Karman equations, the stress function, and elastic ridges in high dimensions [J].
Kramer, EM .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (02) :830-846
[6]  
Lifshitz E. M., 1970, THEORY ELASTICITY
[7]   SCALING PROPERTIES OF STRETCHING RIDGES IN A CRUMPLED ELASTIC SHEET [J].
LOBKOVSKY, A ;
GENTGES, S ;
LI, H ;
MORSE, D ;
WITTEN, TA .
SCIENCE, 1995, 270 (5241) :1482-1485
[8]  
LOBKOVSKY A, IN PRESS PHYS REV E
[9]   Boundary layer analysis of the ridge singularity in a thin plate [J].
Lobkovsky, AE .
PHYSICAL REVIEW E, 1996, 53 (04) :3750-3759
[10]  
NELSON D, 1989, STAT MECHANICS MEMBR