Fractional Hamilton formalism within Caputo's derivative

被引:142
作者
Baleanu, Dumitru [1 ]
Agrawal, Om. P.
机构
[1] Cankaya Univ, Dept Math & Comp Sci, Fac Arts & Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, R-76900 Bucharest, Romania
[3] So Illinois Univ, Carbondale, IL 62901 USA
关键词
fractional Euler-Lagrange equations; fractional Hamiltonian formulation; Caputo derivative;
D O I
10.1007/s10582-006-0406-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canonical Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange formulations lead to the same set of equations.
引用
收藏
页码:1087 / 1092
页数:6
相关论文
共 29 条
[1]   A general formulation and solution scheme for fractional optimal control problems [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :323-337
[2]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[3]  
AGRAWAL OP, 2006, P MME06 ANK TURK APR
[4]  
AGRAWAL OP, 2006, P IFAC FDA06 PORT PO, P131
[5]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[6]  
BALEANU D, 2005, FRACTIONAL DIFFERENT
[7]  
BALEANU D, 2004, P 1 IFAC WORKSH FRAC, P597
[8]  
BALEANU D, 2005, INTELLIGENT SYSTEMS, V2
[9]   Fractional Hamiltonian analysis of irregular systems [J].
Baleanu, Dumitru .
SIGNAL PROCESSING, 2006, 86 (10) :2632-2636
[10]   Extending Bauer's corollary to fractional derivatives [J].
Dreisigmeyer, DW ;
Young, PM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (11) :L117-L121