CVD growth of carbon nanotube bundle arrays

被引:106
作者
Bronikowski, Michael J. [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
carbon nanotubes; chemical vapor deposition; electron microscopy; field emission;
D O I
10.1016/j.carbon.2006.03.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent discovery of enhanced field emission current intensity from arrays of bundles of carbon nanotubes (CNT) has prompted this investigation of the growth of CNT bundle arrays by metal-catalyzed chemical vapor deposition (CVD), in order to understand and control the growth of these arrays. CNT bundle array growth has been characterized as a function of array geometric parameters: the CNT bundle diameter and inter-bundle spacing. We find that CNT bundle array growth varies significantly with bundle size and spacing, which we suggest is due to the formation of a volatile molecular byproduct of ethylene decomposition that enhances CNT growth in areas with high concentrations of metal catalyst. We have also studied and optimized CNT growth with respect to a variety of CVD process parameters, in order to control the length of the resultant CNT bundles. We find that the length of the CNT can be reliably controlled by varying either the reaction time or the gas pressure. Such control over CNT bundle length will be crucial in the incorporation of these bundle arrays into high-intensity electron field emission devices. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2822 / 2832
页数:11
相关论文
共 83 条
[1]   CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy [J].
Ago, H ;
Imamura, S ;
Okazaki, T ;
Saitoj, T ;
Yumura, M ;
Tsuji, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (20) :10035-10041
[2]   Multiwall carbon nanotubes: Synthesis and application [J].
Andrews, R ;
Jacques, D ;
Qian, DL ;
Rantell, T .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1008-1017
[3]   Carbon nanotube electronics [J].
Avouris, P ;
Appenzeller, J ;
Martel, R ;
Wind, SJ .
PROCEEDINGS OF THE IEEE, 2003, 91 (11) :1772-1784
[4]   Molecular electronics with carbon nanotubes [J].
Avouris, P .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1026-1034
[5]   Field emission from carbon nanotubes:: the first five years [J].
Bonard, JM ;
Kind, H ;
Stöckli, T ;
Nilsson, LA .
SOLID-STATE ELECTRONICS, 2001, 45 (06) :893-914
[6]   Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study [J].
Bronikowski, MJ ;
Willis, PA ;
Colbert, DT ;
Smith, KA ;
Smalley, RE .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2001, 19 (04) :1800-1805
[7]  
Cassell AM, 1999, J PHYS CHEM B, V103, P6484, DOI 10.1021/jp990957sCCC:$18.00
[8]   Combinatorial optimization of heterogeneous catalysts used in the growth of carbon nanotubes [J].
Cassell, AM ;
Verma, S ;
Delzeit, L ;
Meyyappan, M ;
Han, J .
LANGMUIR, 2001, 17 (02) :260-264
[9]   Heterogeneous single-walled carbon nanotube catalyst discovery and optimization [J].
Chen, B ;
Parker, G ;
Han, J ;
Meyyappan, M ;
Cassell, AM .
CHEMISTRY OF MATERIALS, 2002, 14 (04) :1891-1896
[10]   Carbon nanotube synthesis and parametric study using CaCO3 nanocrystals as catalyst support by CVD [J].
Cheng, JP ;
Zhang, XB ;
Luo, ZQ ;
Liu, F ;
Ye, Y ;
Yin, WZ ;
Liu, W ;
Han, YX .
MATERIALS CHEMISTRY AND PHYSICS, 2006, 95 (01) :5-11