Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression

被引:608
作者
Sakuma, Yoh
Maruyama, Kyonoshin
Qin, Feng
Osakabe, Yuriko
Shinozaki, Kazuo
Yamaguchi-Shinozaki, Kazuko [1 ]
机构
[1] Univ Tokyo, Grad Sch Agr & Life Sci, Tokyo 1138657, Japan
[2] Japan Int Res Ctr Agr Sci, Biol Resources Div, Tsukuba, Ibaraki 3058686, Japan
[3] RIKEN, Plant Sci Ctr, Yokohama, Kanagawa 2300045, Japan
[4] Japan Sci & Technol Agcy, Core Res Evolut Sci & Technol, Kawaguchi, Saitama 3320012, Japan
关键词
AP2-type transcription factor; drought-stress tolerance; heat-stress tolerance; knockout mutants; microarray analysis;
D O I
10.1073/pnas.0605639103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transcription factor DRIEB2A interacts with a cis-acting dehydration-responsive element (DRE) sequence and activates expression of downstream genes involved in drought- and salt-stress response in Arabidopsis thaliana. Intact DREB2A expression does not activate downstream genes under normal growth conditions. A negative regulatory domain exists in the central region of DREB2A, and deletion of this region transforms DREB2A to a constitutive active form (DREB2A CA). We carried out microarray analysis of transgenic Arabidopsis-overexpressing DREB2A CA and found that the overexpression of DREB2A CA induces not only drought- and salt-responsive genes but also heat-shock (HS)-related genes. Moreover, we found that transient induction of the DREB2A occurs rapidly by HS stress, and that the sGFP-DREB2A protein accumulates in nuclei of HS-stressed cells. DREB2A up-regulated genes were classified into three groups based on their expression patterns: genes induced by HS, genes induced by drought stress, and genes induced by both HS and drought stress. DREB2A up-regulated genes were down-regulated in DREB2A knockout mutants under stress conditions. Thermotolerance was significantly increased in plants overexpressing DREB2A CA and decreased in DREB2A knockout plants. Collectively, these results indicate that DREB2A functions in both water and HS-stress responses.
引用
收藏
页码:18822 / 18827
页数:6
相关论文
共 39 条
[1]  
Bailey T L, 1995, Proc Int Conf Intell Syst Mol Biol, V3, P21
[2]   THE 5'-REGION OF ARABIDOPSIS-THALIANA COR15A HAS CIS-ACTING ELEMENTS THAT CONFER COLD-REGULATED, DROUGHT-REGULATED AND ABA-REGULATED GENE-EXPRESSION [J].
BAKER, SS ;
WILHELM, KS ;
THOMASHOW, MF .
PLANT MOLECULAR BIOLOGY, 1994, 24 (05) :701-713
[3]   Drought and salt tolerance in plants [J].
Bartels, D ;
Sunkar, R .
CRITICAL REVIEWS IN PLANT SCIENCES, 2005, 24 (01) :23-58
[4]   Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana [J].
Busch, W ;
Wunderlich, M ;
Schöffl, F .
PLANT JOURNAL, 2005, 41 (01) :1-14
[5]   Functional interaction between two transcription factors involved in the developmental regulation of a small heat stress protein gene promoter [J].
Díaz-Martín, J ;
Almoguera, CN ;
Prieto-Dapena, P ;
Espinosa, JM ;
Jordano, J .
PLANT PHYSIOLOGY, 2005, 139 (03) :1483-1494
[6]   Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway [J].
Fowler, S ;
Thomashow, MF .
PLANT CELL, 2002, 14 (08) :1675-1690
[7]   Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1 [J].
Furihata, T ;
Maruyama, K ;
Fujita, Y ;
Umezawa, T ;
Yoshida, R ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (06) :1988-1993
[8]   Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression [J].
Gilmour, SJ ;
Zarka, DG ;
Stockinger, EJ ;
Salazar, MP ;
Houghton, JM ;
Thomashow, MF .
PLANT JOURNAL, 1998, 16 (04) :433-442
[9]   pGreen:: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation [J].
Hellens, RP ;
Edwards, EA ;
Leyland, NR ;
Bean, S ;
Mullineaux, PM .
PLANT MOLECULAR BIOLOGY, 2000, 42 (06) :819-832
[10]   Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance [J].
Jaglo-Ottosen, KR ;
Gilmour, SJ ;
Zarka, DG ;
Schabenberger, O ;
Thomashow, MF .
SCIENCE, 1998, 280 (5360) :104-106