Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars

被引:43
作者
Zeidan, Ahmad A. [1 ]
Van Niel, Ed W. J. [1 ]
机构
[1] Lund Univ, Dept Appl Microbiol, SE-22100 Lund, Sweden
关键词
Fermentative hydrogen production; Caldicellulosiruptor; Extreme thermophiles; Co-culture; Mixed sugar substrates; CALDICELLULOSIRUPTOR-SACCHAROLYTICUS; EXTREME THERMOPHILE; MICROBIAL COMMUNITY; XYLOSE; FUNDAMENTALS; MICROFLORA; SUBSTRATE; REACTOR;
D O I
10.1016/j.ijhydene.2008.07.092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Previous studies on the extreme thermophile Caldicellulosiruptor succharolyticus revealed that the organism produces high yields of hydrogen on glucose and xylose, the major components of lignocellulosic hydrolysates. Preliminary experiments on mixed sugar substrates, however, indicated that xylose was prefer-red over glucose. The sugar preference of some other extreme thermophiles, including Caldicellulosiruptor owensensis, Caldicellulosiruptor kristjanssonii and newly enriched, thermophilic compost sludge microflora, was investigated in an attempt to find complementary organisms to C. saccharolyticus for rapid and efficient utilization of lignocellulosic sugars. The behavior of C. owensensis and C. kristjanssonii appeared to be similar to that of C. saccharolyticus, either in pure cultures or in co-cultures with the latter. Co-culturing C. saccharolyticus with the enriched compost microflora resulted in fast, simultaneous consumption of both glucose and xylose in the medium with a relatively high specific hydrogen production rate, 40 mmol (gCDW)(-1) h(-1), and high volumetric productivity, 22.5 mmol l(-1) h(-1). (c) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4524 / 4528
页数:5
相关论文
共 19 条
[1]   Dark fermentative H2 production from xylose and lactose -: Effects of on-line pH control [J].
Calli, Baris ;
Schoenmaekers, Kim ;
Vanbroekhoven, Karolien ;
Diels, Ludo .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (02) :522-530
[2]   Non-thermal production of pure hydrogen from biomass: HYVOLUTION [J].
Claassen, Pietemel A. M. ;
de Vrije, T. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (11) :1416-1423
[3]   Hydrogen production by biological processes: a survey of literature [J].
Das, D ;
Veziroglu, TN .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (01) :13-28
[4]   Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus [J].
de Vrije, T. ;
Mars, A. E. ;
Budde, M. A. W. ;
Lai, M. H. ;
Dijkema, C. ;
de Waard, P. ;
Claassen, P. A. M. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 74 (06) :1358-1367
[5]   Realizing the hydrogen future:: the International Energy Agency's efforts to advance hydrogen energy technologies [J].
Elam, CC ;
Padró, CEG ;
Sandrock, G ;
Luzzi, A ;
Lindblad, P ;
Hagen, EF .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2003, 28 (06) :601-607
[6]   Fundamentals of the fermentative production of hydrogen [J].
Hallenbeck, PC .
WATER SCIENCE AND TECHNOLOGY, 2005, 52 (1-2) :21-29
[7]   Biological hydrogen production; fundamentals and limiting processes [J].
Hallenbeck, PC ;
Benemann, JR .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (11-12) :1185-1193
[8]  
Kádár Z, 2004, APPL BIOCHEM BIOTECH, V113, P497
[9]   Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter [J].
Kim, SH ;
Han, SK ;
Shin, HS .
PROCESS BIOCHEMISTRY, 2006, 41 (01) :199-207
[10]   Mixed culture biotechnology for bioenergy production [J].
Kleerebezem, Robbert ;
van Loosdrecht, Mark C. M. .
CURRENT OPINION IN BIOTECHNOLOGY, 2007, 18 (03) :207-212