Tools for integrated sequence-structure analysis with UCSF Chimera

被引:512
作者
Meng, Elaine C. [1 ]
Pettersen, Eric F. [1 ]
Couch, Gregory S. [1 ]
Huang, Conrad C. [1 ]
Ferrin, Thomas E. [1 ]
机构
[1] Univ Calif San Francisco, Comp Graph Lab, San Francisco, CA 94143 USA
关键词
D O I
10.1186/1471-2105-7-339
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Comparing related structures and viewing the structures in the context of sequence alignments are important tasks in protein structure-function research. While many programs exist for individual aspects of such work, there is a need for interactive visualization tools that: (a) provide a deep integration of sequence and structure, far beyond mapping where a sequence region falls in the structure and vice versa; (b) facilitate changing data of one type based on the other (for example, using only sequence-conserved residues to match structures, or adjusting a sequence alignment based on spatial fit); (c) can be used with a researcher's own data, including arbitrary sequence alignments and annotations, closely or distantly related sets of proteins, etc.; and (d) interoperate with each other and with a full complement of molecular graphics features. We describe enhancements to UCSF Chimera to achieve these goals. Results: The molecular graphics program UCSF Chimera includes a suite of tools for interactive analyses of sequences and structures. Structures automatically associate with sequences in imported alignments, allowing many kinds of crosstalk. A novel method is provided to superimpose structures in the absence of a pre-existing sequence alignment. The method uses both sequence and secondary structure, and can match even structures with very low sequence identity. Another tool constructs structure-based sequence alignments from superpositions of two or more proteins. Chimera is designed to be extensible, and mechanisms for incorporating user-specific data without Chimera code development are also provided. Conclusion: The tools described here apply to many problems involving comparison and analysis of protein structures and their sequences. Chimera includes complete documentation and is intended for use by a wide range of scientists, not just those in the computational disciplines. UCSF Chimera is free for non-commercial use and is available for Microsoft Windows, Apple Mac OS X, Linux, and other platforms from http://www.cgl.ucsf.edu/chimera.
引用
收藏
页数:10
相关论文
共 31 条
[1]   Friend, an integrated analytical front-end application for bioinformatics [J].
Abyzov, A ;
Errami, M ;
Leslin, CM ;
Ilyin, VA .
BIOINFORMATICS, 2005, 21 (18) :3677-3678
[2]   SCOP database in 2004: refinements integrate structure and sequence family data [J].
Andreeva, A ;
Howorth, D ;
Brenner, SE ;
Hubbard, TJP ;
Chothia, C ;
Murzin, AG .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D226-D229
[3]   The enolase superfamily: A general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids [J].
Babbitt, PC ;
Hasson, MS ;
Wedekind, JE ;
Palmer, DRJ ;
Barrett, WC ;
Reed, GH ;
Rayment, I ;
Ringe, D ;
Kenyon, GL ;
Gerlt, JA .
BIOCHEMISTRY, 1996, 35 (51) :16489-16501
[4]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   ViTO: tool for refinement of protein sequence-structure alignments [J].
Catherinot, V ;
Labesse, G .
BIOINFORMATICS, 2004, 20 (18) :3694-3696
[7]   The ASTRAL Compendium in 2004 [J].
Chandonia, JM ;
Hon, G ;
Walker, NS ;
Lo Conte, L ;
Koehl, P ;
Levitt, M ;
Brenner, SE .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D189-D192
[8]  
Dayhoff M., 1978, Atlas of Protein Sequence and Structure, V5, P345
[9]   Multiple Alignment of protein structures and sequences for VMD [J].
Eargle, J ;
Wright, D ;
Luthey-Schulten, Z .
BIOINFORMATICS, 2006, 22 (04) :504-506
[10]  
Fischer D, 1996, PACIFIC SYMPOSIUM ON BIOCOMPUTING '97, P8