Topology and phase transitions: Paradigmatic evidence

被引:48
作者
Franzosi, R
Pettini, M
Spinelli, L
机构
[1] Univ Florence, Dipartimento Fis, I-50125 Florence, Italy
[2] Osservatorio Astrofis Arcetri, I-50125 Florence, Italy
[3] INFM, Unita Firenze, Florence, Italy
[4] CNRS, Ctr Phys Theor, F-13288 Marseille, France
关键词
D O I
10.1103/PhysRevLett.84.2774
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report upon the numerical computation of the Euler characteristic chi (a topologic invariant) of the equipotential hypersurfaces Sigma(v), of the configuration space of the two-dimensional lattice phi(4) model. The pattern chi(Sigma(v)) versus v (potential energy) reveals that a major topology change in the family {Sigma(v)}(v is an element of R) is at the origin of the phase transition in the model considered. The direct evidence given here-of the relevance of topology for phase transitions-is obtained through a general method that can be applied to any other model.
引用
收藏
页码:2774 / 2777
页数:4
相关论文
共 14 条
[1]  
Binder K., 1979, Monte Carlo methods in statistical physics. Topics in current physics
[2]   Hamiltonian dynamics of the two-dimensional lattice φ4 model [J].
Caiani, L ;
Casetti, L ;
Pettini, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (15) :3357-3381
[3]  
CAINANI L, 1997, PHYS REV LETT, V79, P4361
[4]   Topological origin of the phase transition in a mean-field model [J].
Casetti, L ;
Cohen, EGD ;
Pettini, M .
PHYSICAL REVIEW LETTERS, 1999, 82 (21) :4160-4163
[5]  
Federer H., 1969, GEOMETRIC MEASURE TH, P249
[6]   Topological aspects of geometrical signatures of phase transitions [J].
Franzosi, R ;
Casetti, L ;
Spinelli, L ;
Pettini, M .
PHYSICAL REVIEW E, 1999, 60 (05) :R5009-R5012
[7]  
Guillemin V., 2010, DIFFERENTIAL TOPOLOG, V370
[8]  
Nakahara M., 1991, GEOMETRY TOPOLOGY PH
[9]   GEOMETRICAL HINTS FOR A NONPERTURBATIVE APPROACH TO HAMILTONIAN-DYNAMICS [J].
PETTINI, M .
PHYSICAL REVIEW E, 1993, 47 (02) :828-850
[10]  
RASETTI M, 1979, TOPOLOGICAL CONCEPTS