Hamiltonian dynamics of the two-dimensional lattice φ4 model

被引:41
作者
Caiani, L
Casetti, L
Pettini, M
机构
[1] ISAS, SISSA, I-10134 Trieste, Italy
[2] Politecn Torino, Dipartimento Fis, Unita Ric, INFM, I-10129 Turin, Italy
[3] Osserv Astrofis Arcetri, I-50125 Florence, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 15期
关键词
D O I
10.1088/0305-4470/31/15/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hamiltonian dynamics of the classical phi(4) model on a two-dimensional square lattice is investigated by means of numerical simulations. The macroscopic observables are computed as time averages. The results clearly reveal the presence of the continuous phase transition at a finite energy density and are consistent both qualitatively and quantitatively with the predictions of equilibrium statistical mechanics. The Hamiltonian microscopic dynamics also exhibits critical slowing down close to the transition. Moreover, the relationship between chaos and the phase transition is considered, and interpreted in the light of a geometrization of dynamics.
引用
收藏
页码:3357 / 3381
页数:25
相关论文
共 48 条
[1]   Curvature, torsion, microcanonical density and stochastic transition [J].
Alabiso, C ;
Besagni, N ;
Casartelli, M ;
Marenzoni, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14) :3733-3747
[2]  
[Anonymous], COLLECTED WORKS E FE
[3]   CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS [J].
ANTONI, M ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 52 (03) :2361-2374
[4]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[5]  
BINDER K, 1996, P EUROCONF SUMMER SC
[6]  
BONASERA A, 1995, PHYS REV LETT, V57, P3434
[7]   PHASE-TRANSITIONS AND LYAPUNOV CHARACTERISTIC EXPONENTS [J].
BUTERA, P ;
CARAVATI, G .
PHYSICAL REVIEW A, 1987, 36 (02) :962-964
[8]   Geometry of dynamics, Lyapunov exponents, and phase transitions [J].
Caiani, L ;
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW LETTERS, 1997, 79 (22) :4361-4364
[9]  
CAIANI L, 1998, IN PRESS PHYS REV E, V57
[10]   ANALYTIC COMPUTATION OF THE STRONG STOCHASTICITY THRESHOLD IN HAMILTONIAN-DYNAMICS USING RIEMANNIAN GEOMETRY [J].
CASETTI, L ;
PETTINI, M .
PHYSICAL REVIEW E, 1993, 48 (06) :4320-4332