An improved gallium liquid metal ion source geometry for nanotechnology

被引:22
作者
Van Es, JJ
Gierak, J
Forbes, RG
Suvorov, VG
Van den Berghe, T
Dubuisson, P
Monnet, I
Septier, A
机构
[1] CNRS, LPN, F-91460 Marcoussis, France
[2] Univ Surrey, Adv Technol Inst, Sch Elect & Phys Sci, Guildford GU2 7XH, Surrey, England
[3] CEA Saclay, Lab Microscopie & Rayons 10, F-91191 Gif Sur Yvette, France
[4] Conservatoire Natl Arts & Metiers, F-75141 Paris 03, France
关键词
D O I
10.1016/j.mee.2004.02.029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work we present a liquid metal ion source (LMIS) geometry we have developed specifically for evaluating the potential of focused ion beams in nano-fabrication. The ion-emitter we present and detail hereafter was designed to use gallium and developed to improve both the directivity and on-axis current density of the emitted beam. In the case of a gallium beam, experimental test results are presented concerning emission stability, current voltage characteristics and in situ high voltage (1 MV) transmission electron microscope (HVTEM) observations of the emitting apex. We have developed a LMIS with unconventional operational characteristics: the threshold voltage is 17 kV (twice the normal voltage), and the on-axis angular intensity is 80 muA/sr (compared to 20 muA/sr normally). With this source we were able to demonstrate the possibility to realise nano-fabrication experiments close or below the 10 nm scale. The required ion, probe properties would have been inaccessible without dedicated source development effort. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 138
页数:7
相关论文
共 16 条
[1]   Minimum emission current of liquid metal ion sources [J].
Beckman, JC ;
Chang, THP ;
Wagner, A ;
Pease, RFW .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06) :2332-2336
[2]   Energy spread in liquid metal ion sources at low currents [J].
Beckman, JC ;
Chang, THP ;
Wagner, A ;
Pease, RFW .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (06) :3911-3915
[3]   A LOW-CURRENT LIQUID-METAL ION-SOURCE [J].
BELL, AE ;
RAO, K ;
SCHWIND, GA ;
SWANSON, LW .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1988, 6 (03) :927-930
[4]   INSITU HIGH-VOLTAGE TEM OBSERVATION OF AN ELECTROHYDRODYNAMIC (EHD) ION-SOURCE [J].
BENASSAYAG, G ;
SUDRAUD, P ;
JOUFFREY, B .
ULTRAMICROSCOPY, 1985, 16 (01) :1-8
[5]   Understanding how the liquid-metal ion source works [J].
Forbes, RG .
VACUUM, 1997, 48 (01) :85-97
[6]   EFFECTS OF BACKSPUTTERED MATERIAL ON GALLIUM LIQUID-METAL ION-SOURCE BEHAVIOR [J].
GALOVICH, CS .
JOURNAL OF APPLIED PHYSICS, 1988, 63 (10) :4811-4818
[7]   ANALYSIS OF ENERGY BROADENING IN CHARGED-PARTICLE BEAMS [J].
GESLEY, MA ;
SWANSON, LW .
JOURNAL DE PHYSIQUE, 1984, 45 (NC9) :167-172
[8]  
GIERAK J, 2004, IN PRESS APPL PHYS A
[9]   THEORETICAL INVESTIGATION OF LIQUID-METAL ION SOURCES - FIELD AND TEMPERATURE-DEPENDENCE OF ION EMISSION [J].
KINGHAM, DR ;
SWANSON, LW .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1986, 41 (02) :157-169
[10]  
KNAUER W, 1981, OPTIK, V59, P335