Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?

被引:264
作者
Alper, Hal [2 ]
Stephanopoulos, Gregory [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
VIBRIO-FURNISSII M1; RECOMBINANT SACCHAROMYCES-CEREVISIAE; ANAEROBIC XYLOSE FERMENTATION; ESCHERICHIA-COLI STRAINS; FUEL ETHANOL-PRODUCTION; FORMATE HYDROGEN LYASE; YEAST PICHIA-STIPITIS; CLOSTRIDIUM-ACETOBUTYLICUM; ZYMOMONAS-MOBILIS; CELLULOSIC BIOMASS;
D O I
10.1038/nrmicro2186
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The ideal microorganism for biofuel production will possess high substrate utilization and processing capacities, fast and deregulated pathways for sugar transport, good tolerance to inhibitors and product, and high metabolic fluxes and will produce a single fermentation product. It is unclear whether such an organism will be engineered using a native, isolated strain or a recombinant, model organism as the starting point. The choice between engineering natural function and importing biosynthetic capacity is affected by current progress in metabolic engineering and synthetic biology. This Review highlights some of the factors influencing the above decision, in light of current advances.
引用
收藏
页码:715 / 723
页数:9
相关论文
共 101 条
[1]   Tuning genetic control through promoter engineering [J].
Alper, H ;
Fischer, C ;
Nevoigt, E ;
Stephanopoulos, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (36) :12678-12683
[2]   Construction of lycopene-overproducing E-coli strains by combining systematic and combinatorial gene knockout targets [J].
Alper, H ;
Miyaoku, K ;
Stephanopoulos, G .
NATURE BIOTECHNOLOGY, 2005, 23 (05) :612-616
[3]   Uncovering the gene knockout landscape for improved lycopene production in E. coli [J].
Alper, Hal ;
Stephanopoulos, Gregory .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 78 (05) :801-810
[4]   Global transcription machinery engineering: A new approach for improving cellular phenotype [J].
Alper, Hal ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (03) :258-267
[5]   Metabolic engineering of Escherichia coli for 1-butanol production [J].
Atsumi, Shota ;
Cann, Anthony F. ;
Connor, Michael R. ;
Shen, Claire R. ;
Smith, Kevin M. ;
Brynildsen, Mark P. ;
Chou, Katherine J. Y. ;
Hanai, Taizo ;
Liao, James C. .
METABOLIC ENGINEERING, 2008, 10 (06) :305-311
[6]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13
[7]   Production of ethanol from cellulosic biomass by Clostridium thermocellum SS19 in submerged fermentation -: Screening of nutrients using Plackett-Burman design [J].
Balusu, R ;
Paduru, RMR ;
Seenayya, G ;
Reddy, G .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2004, 117 (03) :133-141
[8]   A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol [J].
Becker, J ;
Boles, E .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (07) :4144-4150
[9]   Biodiesel from microalgae [J].
Chisti, Yusuf .
BIOTECHNOLOGY ADVANCES, 2007, 25 (03) :294-306
[10]   The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain [J].
Cornillot, E ;
Nair, RV ;
Papoutsakis, ET ;
Soucaille, P .
JOURNAL OF BACTERIOLOGY, 1997, 179 (17) :5442-5447