Spitzer spectral observations of the Deep Impact ejecta

被引:282
作者
Lisse, C. M.
VanCleve, J.
Adams, A. C.
A'Hearn, M. F.
Fernandez, Y. R.
Farnham, T. L.
Armus, L.
Grillmair, C. J.
Ingalls, J.
Belton, M. J. S.
Groussin, O.
McFadden, L. A.
Meech, K. J.
Schultz, P. H.
Clark, B. C.
Feaga, L. M.
Sunshine, J. M.
机构
[1] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Planetary Explorat Grp, Laurel, MD 20723 USA
[2] Univ Maryland, Dept Astron, College Pk, MD 20742 USA
[3] Ball Aerosp & Technol Corp, Boulder, CO 80306 USA
[4] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[5] CALTECH, Spitzer Space Sci Ctr, Pasadena, CA 91125 USA
[6] Belton Space Explorat Initiat, Tucson, AZ 85716 USA
[7] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA
[8] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA
[9] Lockheed Martin, Space Explorat Syst, Denver, CO 80201 USA
关键词
D O I
10.1126/science.1124694
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spitzer Space Telescope imaging spectrometer observations of comet 9P/Tempel 1 during the Deep Impact encounter returned detailed, highly structured, 5- to 35-micrometer spectra of the ejecta. Emission signatures due to amorphous and crystalline silicates, amorphous carbon, carbonates, phyllositicates, polycyclic aromatic hydrocarbons, water gas and ice, and sulfides were found. Good agreement is seen between the ejecta spectra and the material emitted from comet C/1995 O1 (Hale-Bopp) and the circumstellar material around the young stellar object HD100546. The atomic abundance of the observed material is consistent with solar and C1 chondritic abundances, and the dust-to-gas ratio was determined to be greater than or equal to 1.3. The presence of the observed mix of materials requires efficient methods of annealing amorphous silicates and mixing of high- and low-temperature phases over large distances in the early protosolar nebula.
引用
收藏
页码:635 / 640
页数:6
相关论文
共 50 条
[31]  
LI A, IN PRESS ASTROPHYS J
[32]   Near-infrared spectroscopy of the nucleus of comet 124P/Mrkos [J].
Licandro, J ;
Campins, H ;
Hergenrother, C ;
Lara, LM .
ASTRONOMY & ASTROPHYSICS, 2003, 398 (03) :L45-L48
[33]   The coma of comet 9P/Tempel 1 [J].
Lisse, CM ;
A'Hearn, MF ;
Farnham, TL ;
Groussin, O ;
Meech, KJ ;
Fink, U ;
Schleicher, DG .
SPACE SCIENCE REVIEWS, 2005, 117 (1-2) :161-192
[34]   Rotationally resolved 8-35 micron Spitzer Space Telescope observations of the nucleus of comet 9P/Tempel 1 [J].
Lisse, CM ;
A'Hearn, MF ;
Groussin, O ;
Fernández, YR ;
Belton, MJS ;
van Cleve, JE ;
Charmandaris, V ;
Meech, KJ ;
McGleam, C .
ASTROPHYSICAL JOURNAL, 2005, 625 (02) :L139-L142
[35]  
Malfait K, 1998, ASTRON ASTROPHYS, V332, pL25
[36]  
Melosh H. J., 1989, OXFORD MONOGRAPHS GE, V11
[37]   Crystalline silicates in comets: How did they form? [J].
Nuth, JA ;
Johnson, NM .
ICARUS, 2006, 180 (01) :243-250
[38]   Determining the ages of comets from the fraction of crystalline dust [J].
Nuth, JA ;
Hill, HGM ;
Kletetschka, G .
NATURE, 2000, 406 (6793) :275-276
[39]   AQUEOUS ALTERATION IN 5 CHONDRITIC POROUS INTERPLANETARY DUST PARTICLES [J].
RIETMEIJER, FJM .
EARTH AND PLANETARY SCIENCE LETTERS, 1991, 102 (02) :148-157
[40]   ACID DISSOLUTION EXPERIMENTS - CARBONATES AND THE 6.8-MICROMETER BANDS IN INTERPLANETARY DUST PARTICLES [J].
SANDFORD, SA .
SCIENCE, 1986, 231 (4745) :1540-1542