The Frobenius problem, rational polytopes, and Fourier-Dedekind sums

被引:46
作者
Beck, M [1 ]
Diaz, R
Robins, S
机构
[1] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
[2] Univ No Colorado, Dept Math, Greeley, CO 80639 USA
[3] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
关键词
rational polytopes; lattice points; the linear diophantine problem of Frobenius; Ehrhart quasipolynomial; Dedekind sums;
D O I
10.1006/jnth.2002.2786
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the number of lattice points in integer dilates of the rational polytope [GRAPHICS] where a(1),..., a(n) are positive integers. This polytope is closely related to the linear Diophantine problem of Frobenius: given relatively prime positive integers a(1),...,a(n), find the largest value of t (the Frobenius number) such that m(1)a(1) + ... + m(n)a(n) = t has no solution in positive integers This is equivalent to the problem of finding the largest dilate tP such that the facet {Sigma(k=1)(n) x(k)a(k) = t} contains no lattice point. We present two methods for computing the Ehrhart quasipolynomials L((P) over bar, t) := #(tP boolean AND Z") and L(Pdegrees, t) := #(tPdegrees boolean AND Z"). Within the computations a Dedekind-like finite Fourier sum appears. We obtain a reciprocity law for these sums, generalizing a theorem of Gessel. As a corollary of our formulas, we rederive the reciprocity law for Zagier's higher-dimensional Dedekind sums. Finally, we find bounds for the Fourier-Dedekind sums and use them to give new bounds for the Frobenius number. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:1 / 21
页数:21
相关论文
共 30 条
[21]  
Rademacher H., 1972, The Carus Mathematical Monographs, V16
[22]  
RODSETH OJ, 1979, J REINE ANGEW MATH, V307, P431
[23]   LINEAR DIOPHANTINE PROBLEM OF FROBENIUS [J].
RODSETH, OJ .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 301 :171-178
[24]  
SELMER ES, 1977, J REINE ANGEW MATH, V293, P1
[25]  
Sylvester J. J., 1884, ED TIMES, V41, P171
[26]  
VITEK Y, 1975, J LOND MATH SOC, V10, P390
[27]   HIGHER DIMENSIONAL DEDEKIND SUMS [J].
ZAGIER, D .
MATHEMATISCHE ANNALEN, 1973, 202 (02) :149-172
[28]  
[No title captured]
[29]  
[No title captured]
[30]  
[No title captured]