Structural insight into the autoinhibition mechanism of AMP-activated protein kinase

被引:163
作者
Chen, Lei [1 ]
Jiao, Zhi-Hao [1 ]
Zheng, Li-Sha [2 ,3 ]
Zhang, Yuan-Yuan [1 ]
Xie, Shu-Tao [1 ]
Wang, Zhi-Xin [1 ,2 ,3 ]
Wu, Jia-Wei [1 ]
机构
[1] Tsinghua Univ, Dept Biol Sci & Biotechnol, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Inst Biophys, Beijing 100101, Peoples R China
[3] Chinese Acad Sci, Grad Univ, Beijing 100101, Peoples R China
关键词
CRYSTAL-STRUCTURE; ALPHA-SUBUNITS; RAT-LIVER; ENERGY; PHOSPHORYLATION; DOMAIN; IDENTIFICATION; SEQUENCE; BINDING; BETA;
D O I
10.1038/nature08075
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The AMP-activated protein kinase (AMPK) is characterized by its ability to bind to AMP, which enables it to adjust enzymatic activity by sensing the cellular energy status and maintain the balance between ATP production and consumption in eukaryotic cells(1,2). It also has important roles in the regulation of cell growth and proliferation, and in the establishment and maintenance of cell polarity(3). These important functions have rendered AMPK an important drug target for obesity, type 2 diabetes and cancer treatments(4). However, the regulatory mechanism of AMPK activity by AMP binding remains unsolved. Here we report the crystal structures of an unphosphorylated fragment of the AMPK alpha-subunit (KD-AID) from Schizosaccharomyces pombe that contains both the catalytic kinase domain and an autoinhibitory domain (AID), and of a phosphorylated kinase domain from Saccharomyces cerevisiae (Snf1-pKD). The AID binds, from the 'backside', to the hinge region of its kinase domain, forming contacts with both amino-terminal and carboxy-terminal lobes. Structural analyses indicate that AID binding might constrain the mobility of helix alpha C, hence resulting in an autoinhibited KD-AID with much lower kinase activity than that of the kinase domain alone. AMP activates AMPK both allosterically and by inhibiting dephosphorylation(5,6). Further in vitro kinetic studies demonstrate that disruption of the KD-AID interface reverses the autoinhibition and these AMPK heterotrimeric mutants no longer respond to the change in AMP concentration. The structural and biochemical data have shown the primary mechanism of AMPK autoinhibition and suggest a conformational switch model for AMPK activation by AMP.
引用
收藏
页码:1146 / U139
页数:5
相关论文
共 39 条
[1]   PHENIX:: building new software for automated crystallographic structure determination [J].
Adams, PD ;
Grosse-Kunstleve, RW ;
Hung, LW ;
Ioerger, TR ;
McCoy, AJ ;
Moriarty, NW ;
Read, RJ ;
Sacchettini, JC ;
Sauter, NK ;
Terwilliger, TC .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :1948-1954
[2]   Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1 [J].
Amodeo, Gabriele A. ;
Rudolph, Michael J. ;
Tong, Liang .
NATURE, 2007, 449 (7161) :492-U13
[3]   The AMP-activated protein kinase cascade - a unifying system for energy control [J].
Carling, D .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (01) :18-24
[4]   Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome [J].
Cool, Barbara ;
Zinker, Bradley ;
Chiou, William ;
Kifle, Lemma ;
Cao, Ning ;
Perham, Matthew ;
Dickinson, Robert ;
Adler, Andrew ;
Gagne, Gerard ;
Iyengar, Rajesh ;
Zhao, Gang ;
Marsh, Kennan ;
Kym, Philip ;
Jung, Paul ;
Camp, Heidi S. ;
Frevert, Ernst .
CELL METABOLISM, 2006, 3 (06) :403-416
[5]   Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase [J].
Crute, BE ;
Seefeld, K ;
Gamble, J ;
Kemp, BE ;
Witters, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (52) :35347-35354
[6]   5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2A(c) [J].
Davies, SP ;
Helps, NR ;
Cohen, PTW ;
Hardie, DG .
FEBS LETTERS, 1995, 377 (03) :421-425
[7]   TISSUE DISTRIBUTION OF THE AMP-ACTIVATED PROTEIN-KINASE, AND LACK OF ACTIVATION BY CYCLIC-AMP-DEPENDENT PROTEIN-KINASE, STUDIED USING A SPECIFIC AND SENSITIVE PEPTIDE ASSAY [J].
DAVIES, SP ;
CARLING, D ;
HARDIE, DG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1989, 186 (1-2) :123-128
[8]   Structural basis for the inhibition of tyrosine kinase activity of ZAP-70 [J].
Deindl, Sebastian ;
Kadlecek, Theresa A. ;
Brdicka, Tomas ;
Cao, Xiaoxian ;
Weiss, Arthur ;
Kuriyan, John .
CELL, 2007, 129 (04) :735-746
[9]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[10]   Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase [J].
Goeransson, Olga ;
McBride, Andrew ;
Hawley, Simon A. ;
Ross, Fiona A. ;
Shpiro, Natalia ;
Foretz, Marc ;
Viollet, Benoit ;
Hardie, D. Grahame ;
Sakamoto, Kei .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (45) :32549-32560