A single-sample method for normalizing and combining full-resolution copy numbers from multiple platforms, labs and analysis methods

被引:30
作者
Bengtsson, Henrik [1 ]
Ray, Amrita [2 ]
Spellman, Paul [2 ]
Speed, Terence P. [1 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA
[3] Royal Melbourne Hosp, Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic 3050, Australia
关键词
ARRAY; SEGMENTATION; GENOME;
D O I
10.1093/bioinformatics/btp074
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The rapid expansion of whole-genome copy number (CN) studies brings a demand for increased precision and resolution of CN estimates. Recent studies have obtained CN estimates from more than one platform for the same set of samples, and it is natural to want to combine the different estimates in order to meet this demand. Estimates from different platforms show different degrees of attenuation of the true CN changes. Similar differences can be observed in CNs from the same platform run in different labs, or in the same lab, with different analytical methods. This is the reason why it is not straightforward to combine CN estimates from different sources (platforms, labs and analysis methods). Results: We propose a single-sample multi source normalization that brings full-resolution CN estimates to the same scale across sources. The normalized CNs are such that for any underlying CN level, their mean level is the same regardless of the source, which make them better suited for being combined across sources, e.g. existing segmentation methods may be used to identify aberrant regions. We use microarray-based CN estimates from The Cancer Genome Atlas (TCGA) project to illustrate and validate the method. We show that the normalized and combined data better separate two CN states at a given resolution. We conclude that it is possible to combine CNs from multiple sources such that the resolution becomes effectively larger, and when multiple platforms are combined, they also enhance the genome coverage by complementing each other in different regions.
引用
收藏
页码:861 / 867
页数:7
相关论文
共 23 条
[1]   A fast and flexible method for the segmentation of aCGH data [J].
Ben-Yaacov, Erez ;
Eldar, Yonina C. .
BIOINFORMATICS, 2008, 24 (16) :I139-I145
[2]   Estimation and assessment of raw copy numbers at the single locus level [J].
Bengtsson, H. ;
Irizarry, R. ;
Carvalho, B. ;
Speed, T. P. .
BIOINFORMATICS, 2008, 24 (06) :759-767
[3]   Calibration and assessment of channel-specific biases in microarray data with extended dynamical range -: art. no. 177 [J].
Bengtsson, H ;
Jönsson, G ;
Vallon-Christersson, J .
BMC BIOINFORMATICS, 2004, 5 (1)
[4]  
Bengtsson H., 2008, aroma. affymetrix: A generic framework in R for analyzing small to very large Affymetrix data sets in bounded memory
[5]  
BENGTSSON H, 2004, THESIS LUND U
[6]   Methodological study of affine transformations of gene expression data with proposed robust non-parametric multi-dimensional normalization method [J].
Bengtsson, Henrik ;
Hossjer, Ola .
BMC BIOINFORMATICS, 2006, 7 (1)
[7]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[8]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[9]   Mapping the cancer genome - Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies [J].
Collins, Francis S. ;
Barker, Anna D. .
SCIENTIFIC AMERICAN, 2007, 296 (03) :50-57
[10]   PRINCIPAL CURVES [J].
HASTIE, T ;
STUETZLE, W .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (406) :502-516