Site-directed combinatorial construction of chimaeric genes: General method for optimizing assembly of gene fragments

被引:12
作者
Saftalov, Liz
Smith, Peter A.
Friedman, Alan M.
Bailey-Kellogg, Chris
机构
[1] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA
[2] Purdue Univ, Ctr Canc, W Lafayette, IN 47907 USA
[3] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
[4] Dartmouth Coll, Dept Comp Sci, Hanover, NH 03755 USA
关键词
D O I
10.1002/prot.20984
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Site-directed construction of chimaeric genes by in vitro recombination "mixes-and-matches" precise building blocks from multiple parent proteins, generating libraries of hybrids to be tested for structure-function relationships and/or screened for favorable properties and novel enzymatic activities. A direct annealing and ligation method can construct chimaeric genes without requiring sequence identity between parents, except for the short (approximate to 3 nt) sequences of the fragment overhangs used for specific ligation. Careful planning of the assembly process is necessary, though, in order to ensure effective construction of desired fragment assemblies and to avoid undesired assemblies (e.g., repetition of fragments, fragments out of order). We develop algorithms for specific planned ligation of short overhangs (SPLISO) that efficiently explore possible assembly plans, varying the fragment overhangs and the order of ligation steps in the assembly pathway. While there is a combinatorial explosion in the number of possible assembly plans as the number of breakpoints and parent genes increases, we employ a dynamic programming approach to find globally optimal ones in low-order polynomial time (in practice, taking only seconds for basic assembly plans). We demonstrate the effectiveness of our algorithms in planning the assembly of hybrid libraries, under a variety of experimental options and restrictions, including flexibility in the position and amino acid sequence of breakpoints. Our method promises to enable more effective application of site-directed recombination to protein investigation and engineering.
引用
收藏
页码:629 / 642
页数:14
相关论文
共 43 条
[1]  
Aguinaldo Anna Marie, 2003, Methods Mol Biol, V231, P105
[2]   THE RELATION BETWEEN THE DIVERGENCE OF SEQUENCE AND STRUCTURE IN PROTEINS [J].
CHOTHIA, C ;
LESK, AM .
EMBO JOURNAL, 1986, 5 (04) :823-826
[3]  
Coco Wayne M, 2003, Methods Mol Biol, V231, P111
[4]  
Cormen T. H., 2001, Introduction to Algorithms, V2nd
[5]   Protein design automation [J].
Dahiyat, BI ;
Mayo, SL .
PROTEIN SCIENCE, 1996, 5 (05) :895-903
[6]   De novo protein design: Fully automated sequence selection [J].
Dahiyat, BI ;
Mayo, SL .
SCIENCE, 1997, 278 (5335) :82-87
[7]   DE-NOVO DESIGN OF THE HYDROPHOBIC CORES OF PROTEINS [J].
DESJARLAIS, JR ;
HANDEL, TM .
PROTEIN SCIENCE, 1995, 4 (10) :2006-2018
[8]   THE DEAD-END ELIMINATION THEOREM AND ITS USE IN PROTEIN SIDE-CHAIN POSITIONING [J].
DESMET, J ;
DEMAEYER, M ;
HAZES, B ;
LASTERS, I .
NATURE, 1992, 356 (6369) :539-542
[9]   Site-directed protein recombination as a shortest-path problem [J].
Endelman, JB ;
Silberg, JJ ;
Wang, ZG ;
Arnold, FH .
PROTEIN ENGINEERING DESIGN & SELECTION, 2004, 17 (07) :589-594
[10]   High-resolution protein design with backbone freedom [J].
Harbury, PB ;
Plecs, JJ ;
Tidor, B ;
Alber, T ;
Kim, PS .
SCIENCE, 1998, 282 (5393) :1462-1467