The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression

被引:253
作者
Sripathy, Smitha P.
Stevens, Jessica
Schultz, David C.
机构
[1] Case Western Reserve Univ, Dept Pharmacol, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Case Comprehens Canc Ctr, Cleveland, OH 44106 USA
关键词
D O I
10.1128/MCB.00487-06
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
KAP1/TIF1 beta is proposed to be a universal corepressor protein for the KRAB zinc finger protein (KRAB-zfp) superfamily of transcriptional repressors. To characterize the role of KAP1 and KAP1-interacting proteins in transcriptional repression, we investigated the regulation of stably integrated reporter transgenes by hormoneresponsive KRAB and KAP1 repressor proteins. Here, we demonstrate that depletion of endogenous KAP1 levels by small interfering RNA (siRNA) significantly inhibited KRAB-mediated transcriptional repression of a chromatin template. Similarly, reduction in cellular levels of HP1 alpha/beta/gamma and SETDB1 by siRNA attenuated KRAB-KAP1 repression. We also found that direct tethering of KAP1 to DNA was sufficient to repress transcription of an integrated transgene. This activity is absolutely dependent upon the interaction of KAP1 with HP1 and on an intact PHD finger and bromodomain of KAP1, suggesting that these domains function cooperatively in transcriptional corepression. The achievement of the repressed state by wild-type KAP1 involves decreased recruitment of RNA polymerase 11, reduced levels of histone H3 K9 acetylation and H3K4 methylation, an increase in histone occupancy, enrichment of trimethyl histone H3K9, H3K36, and histone H4K20, and HP1 deposition at proximal regulatory sequences of the transgene. A KAP1 protein containing a mutation of the HP1 binding domain failed to induce any change in the histone modifications associated with DNA sequences of the transgene, implying that HP1-directed nuclear compartmentalization is required for transcriptional repression by the KRAB/KAP1 repression complex. The combination of these data suggests that KAP1 functions to coordinate activities that dynamically regulate changes in histone modifications and deposition of HP1 to establish a de novo microenvironment of heterochromatin, which is required for repression of gene transcription by KRAB-zfps.
引用
收藏
页码:8623 / 8638
页数:16
相关论文
共 68 条
[1]   Conserved interaction between distinct Kruppel-associated box domains and the transcriptional intermediary factor 1 β [J].
Abrink, M ;
Ortiz, JA ;
Mark, C ;
Sanchez, C ;
Looman, C ;
Hellman, L ;
Chambon, P ;
Losson, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (04) :1422-1426
[2]   Two novel Kruppel-associated box-containing zinc-finger proteins, KRAZ1 and KRAZ2, repress transcription through functional interaction with the corepressor KAP-1 (TIF1β/KRIP-1) [J].
Agata, Y ;
Matsuda, E ;
Shimizu, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (23) :16412-16422
[3]   Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation [J].
Ayyanathan, K ;
Lechner, MS ;
Bell, P ;
Maul, GG ;
Schultz, DC ;
Yamada, Y ;
Tanaka, K ;
Torigoe, K ;
Rauscher, FJ .
GENES & DEVELOPMENT, 2003, 17 (15) :1855-1869
[4]  
Ayyanathan K, 2000, CANCER RES, V60, P5803
[5]   Bonus, a Drosophila homolog of TIF1 proteins, interacts with nuclear receptors and can inhibit βFTZ-F1-dependent transcription [J].
Beckstead, R ;
Ortiz, JA ;
Sanchez, C ;
Prokopenko, SN ;
Chambon, P ;
Losson, R ;
Bellen, HJ .
MOLECULAR CELL, 2001, 7 (04) :753-765
[6]   RNA meets chromatin [J].
Bernstein, E ;
Allis, CD .
GENES & DEVELOPMENT, 2005, 19 (14) :1635-1655
[7]   The PHD finger, a nuclear protein-interaction domain [J].
Bienz, M .
TRENDS IN BIOCHEMICAL SCIENCES, 2006, 31 (01) :35-40
[8]   Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division [J].
Brown, KE ;
Baxter, J ;
Graf, D ;
Merkenschlager, M ;
Fisher, AG .
MOLECULAR CELL, 1999, 3 (02) :207-217
[9]   Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin [J].
Brown, KE ;
Guest, SS ;
Smale, ST ;
Hahm, K ;
Merkenschlager, M ;
Fisher, AG .
CELL, 1997, 91 (06) :845-854
[10]   Stable suppression of tumorigenicity by virus-mediated RNA interference [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
CANCER CELL, 2002, 2 (03) :243-247