Nuclei Accumbens Phase Synchrony Predicts Decision-Making Reversals Following Negative Feedback

被引:71
作者
Cohen, Michael X. [1 ,2 ,4 ]
Axmacher, Nikolai [1 ,2 ]
Lenartz, Doris [5 ]
Elger, Christian E. [1 ,2 ]
Sturm, Volker [5 ]
Schlaepfer, Thomas E. [3 ,6 ]
机构
[1] Univ Bonn, Dept Epileptol, D-53105 Bonn, Germany
[2] Univ Bonn, Ctr Life & Brain, D-53105 Bonn, Germany
[3] Univ Bonn, Dept Psychiat & Psychotherapy, D-53105 Bonn, Germany
[4] Univ Amsterdam, Dept Psychol, NL-1018 WB Amsterdam, Netherlands
[5] Univ Cologne, Dept Stereotact Neurosurg, D-50923 Cologne, Germany
[6] Johns Hopkins Univ, Dept Psychiat, Baltimore, MD 21287 USA
关键词
DEEP BRAIN-STIMULATION; RAT STRIATUM; HIPPOCAMPAL; REWARD; MEMORY; OSCILLATIONS; CORTEX; FREQUENCY; AMYGDALA; NEURONS;
D O I
10.1523/JNEUROSCI.5335-08.2009
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The nucleus accumbens plays a key role in reinforcement-guided behaviors. Here, we report that electrophysiological oscillatory phase synchrony between the two nuclei accumbens may play a crucial role in using negative feedback to guide decision making. We recorded local field potentials from the human nucleus accumbens and the medial frontal cortex (via surface EEG) from patients who had deep brain stimulation electrodes implanted. Patients performed a reversal learning task in which they decided whether to alter their decision strategy following monetary losses. Strategy switches following losses were preceded by enhanced theta (4-8 Hz) phase synchrony between the nuclei accumbens, and a break-down of gamma (20-80 Hz)-alpha (8-12 Hz) coupling. Furthermore, the strength of the intersite phase synchrony predicted response time adjustments in the subsequent trial. These findings suggest that a neural network including the nucleus accumbens bilaterally becomes functionally connected via theta phase synchrony to signal the need to adjust behavior.
引用
收藏
页码:7591 / 7598
页数:8
相关论文
共 52 条
[1]  
[Anonymous], 1971, Statistical Principles in Experimental Design
[2]   Thalamic-prefrontal cortical-ventral striatal circuitry mediates dissociable components of strategy set shifting [J].
Block, Annie E. ;
Dhanji, Hasina ;
Thompson-Tardif, Sarah F. ;
Floresco, Stan B. .
CEREBRAL CORTEX, 2007, 17 (07) :1625-1636
[3]   Selective disruption of nucleus accumbens gating mechanisms in rats behaviorally sensitized to methamphetamine [J].
Brady, AM ;
Glick, SD ;
O'Donnell, P .
JOURNAL OF NEUROSCIENCE, 2005, 25 (28) :6687-6695
[4]   High gamma power is phase-locked to theta oscillations in human neocortex [J].
Canolty, R. T. ;
Edwards, E. ;
Dalal, S. S. ;
Soltani, M. ;
Nagarajan, S. S. ;
Kirsch, H. E. ;
Berger, M. S. ;
Barbaro, N. M. ;
Knight, R. T. .
SCIENCE, 2006, 313 (5793) :1626-1628
[5]  
Chrobak JJ, 1998, J NEUROSCI, V18, P388
[6]   Amygdala tractography predicts functional connectivity and learning during feedback-guided decision-making [J].
Cohen, Michael X. ;
Elger, Christian E. ;
Weber, Berrid .
NEUROIMAGE, 2008, 39 (03) :1396-1407
[7]   Reward expectation modulates feedback-related negativity and EEG spectra [J].
Cohen, Michael X. ;
Elger, Christian E. ;
Ranganath, Charan .
NEUROIMAGE, 2007, 35 (02) :968-978
[8]   Good Vibrations: Cross-frequency Coupling in the Human Nucleus Accumbens during Reward Processing [J].
Cohen, Michael X. ;
Axmacher, Nikolai ;
Lenartz, Doris ;
Elger, Christian E. ;
Sturm, Volker ;
Schlaepfer, Thomas E. .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2009, 21 (05) :875-889
[9]   Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging [J].
Cools, R ;
Clark, L ;
Owen, AM ;
Robbins, TW .
JOURNAL OF NEUROSCIENCE, 2002, 22 (11) :4563-4567
[10]   Reversal learning in Parkinson's disease depends on medication status and outcome valence [J].
Cools, Roshan ;
Altamirano, Lee ;
D'Esposito, Mark .
NEUROPSYCHOLOGIA, 2006, 44 (10) :1663-1673