The DNA-dependent protein kinase: the director at the end

被引:178
作者
Meek, K
Gupta, S
Ramsden, DA
Lees-Miller, SP
机构
[1] Michigan State Univ, Dept Pathobiol & Diagnost Invest, E Lansing, MI 48824 USA
[2] Michigan State Univ, Coll Vet Med, E Lansing, MI 48824 USA
[3] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Biophys & Biochem, Chapel Hill, NC 27599 USA
[5] Univ Calgary, Dept Biochem & Mol Biol, Calgary, AB, Canada
关键词
D O I
10.1111/j.0105-2896.2004.00162.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Efficient repair of DNA double-strand breaks is essential for the maintenance of chromosomal integrity. In higher eukaryotes, non-homologous end-joining (NHEJ) DNA is the primary pathway that repairs these breaks. NHEJ also functions in developing lymphocytes to repair strand breaks that occur during V(D)J recombination, the site-specific recombination process that provides for the assembly of functional atitigen-receptor genes. If V(D)J recombination is impaired, B- and T-lymphocyte development is blocked resulting in severe combined immunodeficiency disease. In the last decade, an intensive research effort has focused on NHEJ resulting in a reasonable understanding of how double-strand breaks are resolved. Six distinct gene products have been identified that function in this pathway (Ku70, Ku86, XRCC4, DNA ligase IV, Artemis, and DNA-PKcs). Three of these comprise one complex, the DNA-dependent protein kinase (DNA-PK). This protein complex is central during NHEJ, because DNA-PK initially recognizes and binds to the damaged DNA and then targets the other repair activities to the site of DNA damage. In this review, we discuss recent developments that have provided insight into how DNA-PK functions, once bound to DNA ends.
引用
收藏
页码:132 / 141
页数:10
相关论文
共 82 条
[1]  
Anderson CW, 1996, CURR TOP MICROBIOL, V217, P91
[2]   DNA end-joining catalyzed by human cell-free extracts [J].
Baumann, P ;
West, SC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (24) :14066-14070
[3]   Immunoglobulin κ light chain gene rearrangement is impaired in mice deficient for DNA polymerase mu [J].
Bertocci, B ;
De Smet, A ;
Berek, C ;
Weill, JC ;
Reynaud, CA .
IMMUNITY, 2003, 19 (02) :203-211
[4]   DEFECTIVE DNA-DEPENDENT PROTEIN-KINASE ACTIVITY IS LINKED TO V(D)J RECOMBINATION AND DNA-REPAIR DEFECTS ASSOCIATED WITH THE MURINE SCID MUTATION [J].
BLUNT, T ;
FINNIE, NJ ;
TACCIOLI, GE ;
SMITH, GCM ;
DEMENGEOT, J ;
GOTTLIEB, TM ;
MIZUTA, R ;
VARGHESE, AJ ;
ALT, FW ;
JEGGO, PA ;
JACKSON, SP .
CELL, 1995, 80 (05) :813-823
[5]   Visualization of DNA-induced conformational changes in the DNA repair kinase DNA-PKcs [J].
Boskovic, J ;
Rivera-Calzada, A ;
Maman, JD ;
Chacón, P ;
Willison, KR ;
Pearl, LH ;
Llorca, O .
EMBO JOURNAL, 2003, 22 (21) :5875-5882
[6]   A SEVERE COMBINED IMMUNODEFICIENCY MUTATION IN THE MOUSE [J].
BOSMA, GC ;
CUSTER, RP ;
BOSMA, MJ .
NATURE, 1983, 301 (5900) :527-530
[7]   FAT: a novel domain in PIK-related kinases [J].
Bosotti, R ;
Isacchi, A ;
Sonnhammer, ELL .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (05) :225-227
[8]   Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment [J].
Calsou, P ;
Delteil, C ;
Frit, P ;
Droulet, J ;
Salles, B .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 326 (01) :93-103
[9]   The DNA-dependent protein kinase catalytic activity regulates DNA end processing by means of Ku entry into DNA [J].
Calsou, P ;
Frit, P ;
Humbert, O ;
Muller, C ;
Chen, DJ ;
Salles, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (12) :7848-7856
[10]   DNA looping by Ku and the DNA-dependent protein kinase [J].
Cary, RB ;
Peterson, SR ;
Wang, JT ;
Bear, DG ;
Bradbury, EM ;
Chen, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (09) :4267-4272