The crystal structure of human endonuclease VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity

被引:122
作者
Doublié, S [1 ]
Bandaru, V [1 ]
Bond, JP [1 ]
Wallace, SS [1 ]
机构
[1] Univ Vermont, Markey Ctr Mol Genet, Dept Microbiol & Mol Genet, Burlington, VT 05405 USA
关键词
D O I
10.1073/pnas.0402051101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In prokaryotes, two DNA glycosylases recognize and excise oxidized pyrimidines: enclonuclease III (Nth) and enclonuclease VIII (Nei). The oxidized purine 8-oxoguanine, on the other hand, is recognized by Fpg (also known as MutM), a glycosylase that belongs to the same family as Nei. The recent availability of the human genome sequence allowed the identification of three human homologs of Escherichia coli Nei. We report here the crystal structure of a human Nei-like (NEIL) enzyme, NEIL1. The structure of NEIL1 exhibits the same overall fold as E. coli Nei, albeit with an unexpected twist. Sequence alignments had predicted that NEIL1 would lack a zinc finger, and it was therefore expected to use a different DNA-binding motif instead. Our structure revealed that, to the contrary, NEIL1 contains a structural motif composed of two antiparallel beta-strands that mimics the antiparallel beta-hairpin zinc finger found in other Fpg/Nei family members but lacks the loops that harbor the zinc-binding residues and, therefore, does not coordinate zinc. This "zincless finger" appears to be required for NEIL1 activity, because mutating a very highly conserved arginine within this motif greatly reduces the glycosylase activity of the enzyme.
引用
收藏
页码:10284 / 10289
页数:6
相关论文
共 61 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   MECHANISM OF DNA STRAND NICKING AT APURINIC APYRIMIDINIC SITES BY ESCHERICHIA-COLI [FORMAMIDOPYRIMIDINE]DNA GLYCOSYLASE [J].
BAILLY, V ;
VERLY, WG ;
OCONNOR, T ;
LAVAL, J .
BIOCHEMICAL JOURNAL, 1989, 262 (02) :581-589
[3]   Overproduction, crystallization and preliminary crystallographic analysis of a novel human DNA-repair enzyme that damage recognizes oxidative DNA damage [J].
Bandaru, V ;
Cooper, W ;
Wallace, SS ;
Doublié, S .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :1142-1144
[4]   A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII [J].
Bandaru, V ;
Sunkara, S ;
Wallace, SS ;
Bond, JP .
DNA REPAIR, 2002, 1 (07) :517-529
[5]   A novel role for Escherichia coli endonuclease VIII in prevention of spontaneous G→T transversions [J].
Blaisdell, JO ;
Hatahet, Z ;
Wallace, SS .
JOURNAL OF BACTERIOLOGY, 1999, 181 (20) :6396-6402
[6]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[7]   AN ENDONUCLEASE ACTIVITY OF ESCHERICHIA-COLI THAT SPECIFICALLY REMOVES 8-HYDROXYGUANINE RESIDUES FROM DNA [J].
CHUNG, MH ;
KASAI, H ;
JONES, DS ;
INOUE, H ;
ISHIKAWA, H ;
OHTSUKA, E ;
NISHIMURA, S .
MUTATION RESEARCH, 1991, 254 (01) :1-12
[8]   De novo protein design: Fully automated sequence selection [J].
Dahiyat, BI ;
Mayo, SL .
SCIENCE, 1997, 278 (5335) :82-87
[9]   Entering a new phase: Using solvent halide ions in protein structure determination [J].
Dauter, Z ;
Dauter, M .
STRUCTURE, 2001, 9 (02) :R21-R26
[10]   Substrate specificity and excision kinetics of Escherichia coli endonuclease VIII (Nei) for modified bases in DNA damaged by free radicals [J].
Dizdaroglu, M ;
Burgess, SM ;
Jaruga, P ;
Hazra, TK ;
Rodriguez, H ;
Lloyd, RS .
BIOCHEMISTRY, 2001, 40 (40) :12150-12156