AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues

被引:293
作者
Xue, Bingzhong [1 ]
Kahn, Barbara B. [1 ]
机构
[1] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Dept Med,Div Endocrinol Diabet & Metab, Boston, MA 02215 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2006年 / 574卷 / 01期
关键词
D O I
10.1113/jphysiol.2006.113217
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The evolutionarily conserved serine/threonine kinase, AMP-activated protein kinase (AMPK), functions as a cellular fuel gauge that regulates metabolic pathways in glucose and fatty acid metabolism and protein synthesis. Recent data strongly implicate the AMPK-acetyl CoA carboxylase (ACC)-malonyl CoA pathway in the hypothalamus in the regulation of food intake, body weight and hepatic glucose production. Furthermore, data indicate that AMPK is a mediator of the effects of adipocyte-derived and gut-derived hormones and peptides on fatty acid oxidation and glucose uptake in peripheral tissues. Studies are now elucidating the potential role of kinases upstream of AMPK in these metabolic effects. In addition, recently, several novel downstream effectors of AMPK have been identified. The AMPK pathway in the hypothalamus and peripheral tissues coordinately integrates inputs from multiple hormones, peptides and nutrients to maintain energy homeostasis.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 81 条
[1]   Components of a calmodulin-dependent protein kinase cascade -: Molecular cloning, functional characterization and cellular localization of Ca2+/calmodulin-dependent protein kinase kinase β [J].
Anderson, KA ;
Means, RL ;
Huang, QH ;
Kemp, BE ;
Goldstein, EG ;
Selbert, MA ;
Edelman, AM ;
Fremeau, RT ;
Means, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :31880-31889
[2]   AMP-activated protein kinase plays a role in the control of food intake [J].
Andersson, U ;
Filipsson, K ;
Abbott, CR ;
Woods, A ;
Smith, K ;
Bloom, SR ;
Carling, D ;
Small, CJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (13) :12005-12008
[3]   Regulation of fasted blood glucose by resistin [J].
Banerjee, RR ;
Rangwala, SM ;
Shapiro, JS ;
Rich, AS ;
Rhoades, B ;
Qi, Y ;
Wang, J ;
Rajala, MW ;
Pocai, A ;
Scherer, PE ;
Steppan, CM ;
Ahima, RS ;
Obici, S ;
Rossetti, L ;
Lazar, MA .
SCIENCE, 2004, 303 (5661) :1195-1198
[4]   AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. [J].
Bolster, DR ;
Crozier, SJ ;
Kimball, SR ;
Jefferson, LS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (27) :23977-23980
[5]   Inhibition of hypothalamic fatty acid synthase triggers rapid activation of fatty acid oxidation in skeletal muscle [J].
Cha, SH ;
Hu, Z ;
Chohnan, S ;
Lane, MD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (41) :14557-14562
[6]   Disappearance of body fat in normal rats induced by adenovirus-mediated leptin gene therapy [J].
Chen, GX ;
Koyama, K ;
Yuan, X ;
Lee, Y ;
Zhou, YT ;
ODoherty, R ;
Newgard, CB ;
Unger, RH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (25) :14795-14799
[7]   Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status [J].
Cheng, SWY ;
Fryer, LGD ;
Carling, D ;
Shepherd, PR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (16) :15719-15722
[8]   Hypothalamic mTOR signaling regulates food intake [J].
Cota, D ;
Proulx, K ;
Smith, KAB ;
Kozma, SC ;
Thomas, G ;
Woods, SC ;
Seeley, RJ .
SCIENCE, 2006, 312 (5775) :927-930
[9]  
Cota D, 2003, J CLIN INVEST, V112, P423, DOI [10.1172/JCI200317725, 10.1172/JCI17725]
[10]   A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans [J].
Cummings, DE ;
Purnell, JQ ;
Frayo, RS ;
Schmidova, K ;
Wisse, BE ;
Weigle, DS .
DIABETES, 2001, 50 (08) :1714-1719