The frontier of simulation-based inference

被引:498
作者
Cranmer, Kyle [1 ,2 ]
Brehmer, Johann [1 ,2 ]
Louppe, Gilles [3 ]
机构
[1] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA
[2] NYU, Ctr Data Sci, New York, NY 10011 USA
[3] Univ Liege, Montefiore Inst, B-4000 Liege, Belgium
基金
美国国家科学基金会;
关键词
statistical inference; implicit models; likelihood-free inference; approximate Bayesian computation; neural density estimation; APPROXIMATE BAYESIAN COMPUTATION; SEQUENTIAL MONTE-CARLO;
D O I
10.1073/pnas.1912789117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many domains of science have developed complex simulations to describe phenomena of interest. While these simulations provide high-fidelity models, they are poorly suited for inference and lead to challenging inverse problems. We review the rapidly developing field of simulation-based inference and identify the forces giving additional momentum to the field. Finally, we describe how the frontier is expanding so that a broad audience can appreciate the profound influence these developments may have on science.
引用
收藏
页码:30055 / 30062
页数:8
相关论文
共 74 条
[41]  
Germain M., 32 INT C MACH LEARN, V2, P881
[42]  
Gordon A. D., 2014, P C FUT SOFTW ENG
[43]  
Grathwohl Will, 2019, ICLR
[44]  
Hamrick J. B., 2017, ARXIV170502670
[45]  
Hermans J., 2019, ARXIV190304057
[46]  
Hjortso M. A., 2018, LINEAR MATH MODELS C, P123
[47]  
Huang C. W., 2018, 35 INT C MACH LEARN, V5, P3309
[48]  
Jarvenpaa M., 2017, ARXIV170400520
[49]  
Kingma DP, 2018, 32 C NEURAL INFORM P
[50]  
LeCun Y., 2018, DEEP LEARNING EST MO